About this Journal Submit a Manuscript Table of Contents
Computational Intelligence and Neuroscience
Volume 2011 (2011), Article ID 363565, 13 pages
http://dx.doi.org/10.1155/2011/363565
Research Article

Craniux: A LabVIEW-Based Modular Software Framework for Brain-Machine Interface Research

1Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA
2Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
3Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA
4Department of Veterans Affairs, Human Engineering Research Laboratories, Pittsburgh, PA 15206, USA
5Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA

Received 1 October 2010; Revised 7 December 2010; Accepted 24 January 2011

Academic Editor: Sylvain Baillet

Copyright © 2011 Alan D. Degenhart et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. B. Schwartz, X. T. Cui, D. Weber, and D. W. Moran, “Brain-controlled interfaces: movement restoration with neural prosthetics,” Neuron, vol. 52, no. 1, pp. 205–220, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. W. Wang, J. L. Collinger, M. A. Perez et al., “Neural interface technology for rehabilitation: exploiting and promoting neuroplasticity,” Physical Medicine and Rehabilitation Clinics of North America, vol. 21, no. 1, pp. 157–178, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. D. J. McFarland, W. A. Sarnacki, and J. R. Wolpaw, “Electroencephalographic (EEG) control of three-dimensional movement,” Journal of Neural Engineering, vol. 7, no. 3, Article ID 036007, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Mellinger, G. Schalk, C. Braun et al., “An MEG-based brain-computer interface (BCI),” NeuroImage, vol. 36, no. 3, pp. 581–593, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. G. Schalk, K. J. Miller, N. R. Anderson et al., “Two-dimensional movement control using electrocorticographic signals in humans,” Journal of Neural Engineering, vol. 5, no. 1, pp. 75–84, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. D. A. Heldman, W. Wang, S. S. Chan, and D. W. Moran, “Local field potential spectral tuning in motor cortex during reaching,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 14, no. 2, pp. 180–183, 2006. View at Publisher · View at Google Scholar
  7. L. R. Hochberg, M. D. Serruya, G. M. Friehs et al., “Neuronal ensemble control of prosthetic devices by a human with tetraplegia,” Nature, vol. 442, no. 7099, pp. 164–171, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Velliste, S. Perel, M. C. Spalding, A. S. Whitford, and A. B. Schwartz, “Cortical control of a prosthetic arm for self-feeding,” Nature, vol. 453, no. 7198, pp. 1098–1101, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. K. Ganguly and J. M. Carmena, “Emergence of a stable cortical map for neuroprosthetic control,” PLoS Biology, vol. 7, no. 7, Article ID e1000153, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Koyama, S. M. Chase, A. S. Whitford, M. Velliste, A. B. Schwartz, and R. E. Kass, “Comparison of brain-computer interface decoding algorithms in open-loop and closed-loop control,” Journal of Computational Neuroscience, vol. 29, pp. 73–87, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Adee, “Dean Kamen's `luke arm' prosthesis readies for clinical trials,” IEEE Spectrum, February 2008, http://spectrum.ieee.org/biomedical/bionics/dean-kamens-luke-arm-prosthesis-readies-for-clinical-trials.
  12. S. Adee, “Winner: the revolution will be prosthetized,” IEEE Spectrum, January 2009, http://spectrum.ieee.org/robotics/medical-robots/winner-the-revolution-will-be-prosthetized.
  13. G. Schalk, D. J. McFarland, T. Hinterberger, N. Birbaumer, and J. R. Wolpaw, “BCI2000: a general-purpose brain-computer interface (BCI) system,” IEEE Transactions on Biomedical Engineering, vol. 51, no. 6, pp. 1034–1043, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. G. Schalk, “BCI2000 provided the basis for experiments in the following peer-reviewed journal papers,” BCI2000 Website.
  15. “Bcpy2000,” August 2010, http://bci2000.org/downloads/BCPy2000/BCPy2000.html.
  16. J. A. Wilson, J. Mellinger, G. Schalk, and J. Williams, “A procedure for measuring latencies in brain computer interfaces,” IEEE Transactions on Biomedical Engineering, vol. 57, no. 7, pp. 1785–1797, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. “The NI TDMS file format,” National Instruments, August 2010, http://zone.ni.com/devzone/cda/tut/p/id/3727.
  18. A. P. Georgopoulos, A. B. Schwartz, and R. E. Kettner, “Neuronal population coding on movement direction,” Science, vol. 233, no. 4771, pp. 1416–1419, 1986. View at Scopus
  19. E. Salinas and L. F. Abbott, “Vector reconstruction from firing rates,” Journal of Computational Neuroscience, vol. 1, no. 1-2, pp. 89–107, 1994. View at Publisher · View at Google Scholar · View at Scopus
  20. A. B. Schwartz, D. W. Moran, and G. A. Reina, “Differential representation of perception and action in the frontal cortex,” Science, vol. 303, no. 5656, pp. 380–383, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Nagle, “Congestion control in IP/TCP internetworks,” January 1984, http://tools.ietf.org/html/rfc896.
  22. E. C. Leuthardt, G. Schalk, J. R. Wolpaw, J. G. Ojemann, and D. W. Moran, “A brain-computer interface using electrocorticographic signals in humans,” Journal of Neural Engineering, vol. 1, no. 2, pp. 63–71, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. M. S. Keshner, “1/f NOISE,” Proceedings of the IEEE, vol. 70, no. 3, pp. 212–218, 1982. View at Scopus
  24. C. Tallon-Baudry, O. Bertrand, M. A. Hénaff, J. Isnard, and C. Fischer, “Attention modulates gamma-band oscillations differently in the human lateral occipital cortex and fusiform gyrus,” Cerebral Cortex, vol. 15, no. 5, pp. 654–662, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. E. Edwards, S. S. Nagarajan, S. S. Dalal et al., “Spatiotemporal imaging of cortical activation during verb generation and picture naming,” NeuroImage, vol. 50, no. 1, pp. 291–301, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. A. B. Schwartz, R. E. Kettner, and A. P. Georgopoulos, “Primate motor cortex and free arm movements to visual targets in three-dimensional space. I. Relations between single cell discharge and direction of movement,” Journal of Neuroscience, vol. 8, no. 8, pp. 2913–2927, 1988.
  27. W. Wang, S. S. Chan, D. A. Heldman, and D. W. Moran, “Motor cortical representation of position and velocity during reaching,” Journal of Neurophysiology, vol. 97, no. 6, pp. 4258–4270, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. D. M. Taylor, S. I. H. Tillery, and A. B. Schwartz, “Direct cortical control of 3D neuroprosthetic devices,” Science, vol. 296, no. 5574, pp. 1829–1832, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. W. Wang, A. D. Degenhart, J. L. Collinger et al., “Human motor cortical activity recorded with micro-ECoG electrodes during individual finger movements,” in Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine (EMBC '09), pp. 586–589, September 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. D. Bacher, J. McFerron, N. Krishnamurthy, and A. Batista, “An experimental rig for closed-loop neuroprosthetics,” in Poster Presented as Part of the Society for Neuroscience Conference, pp. 1–5, Washington, DC, USA, September 2008.
  31. Y. Renard, F. Lotte, G. Gibert et al., “OpenViBE: an open-source software platform to design, test, and use brain-computer interfaces in real and virtual environments,” Presence: Teleoperators and Virtual Environments, vol. 19, no. 1, pp. 35–53, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. G. Sudre, W. Wang, T. Song et al., “rtMEG: a real-time software toolbox for brain-machine interfaces using magnetoencephelography,” in Proceedings of the 17th International Conference on Biomagnetism Advances in Biomagnetism (Biomag '10), vol. 28, pp. 362–365, March 2010. View at Publisher · View at Google Scholar
  33. “The FieldTrip buffer for real-time access to EEG/MEG data,” October 2010, http://fieldtrip.fcdonders.nl/development/realtime/buffer.
  34. G. Schalk, E. C. Leuthardt, P. Brunner, J. G. Ojemann, L. A. Gerhardt, and J. R. Wolpaw, “Real-time detection of event-related brain activity,” NeuroImage, vol. 43, no. 2, pp. 245–249, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. G. Schalk, P. Brunner, L. A. Gerhardt, H. Bischof, and J. R. Wolpaw, “Brain-computer interfaces (BCIs): detection instead of classification,” Journal of Neuroscience Methods, vol. 167, no. 1, pp. 51–62, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. A. Delorme and S. Makeig, “EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis,” Journal of Neuroscience Methods, vol. 134, no. 1, pp. 9–21, 2004. View at Publisher · View at Google Scholar · View at Scopus