Research Article

BrainNetVis: An Open-Access Tool to Effectively Quantify and Visualize Brain Networks

Table 1

Network and vertex metrics available in BrainNetVis.

Zhang and Horvath ๐‘ ๐‘ โˆ‘ ( ๐‘ฃ ) = ๐‘– โ‰  ๐‘— โˆˆ ๐‘‰ โงต { ๐‘ฃ } ๎ ๐‘ค ๐‘ฃ ๐‘– ๎ ๐‘ค ๐‘– ๐‘— ๎ ๐‘ค ๐‘— ๐‘ฃ / โˆ‘ ๐‘– โ‰  ๐‘— โˆˆ ๐‘‰ โงต { ๐‘ฃ } ๎ ๐‘ค ๐‘ฃ ๐‘– ๎ ๐‘ค ๐‘— ๐‘ฃ โ‡’
๐‘ ๐‘ ( ๐‘ฃ ) = ( 1 / m a x ๐‘– , ๐‘— ( ๐‘ค ๐‘– ๐‘— โˆ‘ ) ) โ‹… ( ๐‘– โ‰  ๐‘— โˆˆ ๐‘‰ โงต { ๐‘ฃ } ๐‘ค ๐‘ฃ ๐‘– ๐‘ค ๐‘– ๐‘— ๐‘ค ๐‘— ๐‘ฃ / โˆ‘ ๐‘– โ‰  ๐‘— โˆˆ ๐‘‰ โงต { ๐‘ฃ } ๐‘ค ๐‘ฃ ๐‘– ๐‘ค ๐‘— ๐‘ฃ )
The weights have been normalized by m a x ๐‘– , ๐‘— ( ๐‘ค ๐‘– ๐‘— ) .
The above definition uses only the network values, in the context of gene coexpression networks.

Onnela ๐‘ ๐‘‚ ๎€ท ( ๐‘ฃ ) = ( 1 / 2 d e g ( ๐‘ฃ ) ๎€ธ ) โˆ‘ ๐‘– โ‰  ๐‘— โˆˆ ๐‘‰ โงต { ๐‘ฃ } ( ๎ ๐‘ค ๐‘ฃ ๐‘– ๎ ๐‘ค ๐‘– ๐‘— ๎ ๐‘ค ๐‘— ๐‘ฃ ) 1 / 3 โ‡’
๐‘ ๐‘‚ ( ๐‘ฃ ) = ( 1 / m a x ๐‘– , ๐‘— ( ๐‘ค ๐‘– ๐‘— ) ๎€ท 2 d e g ( ๐‘ฃ ) ๎€ธ ) โˆ‘ ๐‘– โ‰  ๐‘— โˆˆ ๐‘‰ โงต { ๐‘ฃ } ( ๐‘ค ๐‘ฃ ๐‘– ๐‘ค ๐‘– ๐‘— ๐‘ค ๐‘— ๐‘ฃ ) 1 / 3
Here, the edge values are normalized by the maximum value in the network,
๎ ๐‘ค ๐‘– ๐‘— = ๐‘ค ๐‘– ๐‘— / m a x ๐‘™ , ๐‘˜ ๐‘ค ๐‘™ ๐‘˜ .

Assortative mixing
Symmetrical weighted networks โˆ‘ ๐‘Ÿ = ( 4 ๐‘š { ๐‘ข , ๐‘ฃ } โˆˆ ๐ธ โˆ‘ ๐œŒ ( ๐‘ข ) ๐œŒ ( ๐‘ฃ ) โˆ’ [ { ๐‘ข , ๐‘ฃ } โˆˆ ๐ธ ( ๐œŒ ( ๐‘ข ) + ๐œŒ ( ๐‘ฃ ) ) ] 2 โˆ‘ ) / ( 2 ๐‘š { ๐‘ข , ๐‘ฃ } โˆˆ ๐ธ ( ๐œŒ ( ๐‘ข ) 2 + ๐œŒ ( ๐‘ฃ ) 2 โˆ‘ ) โˆ’ [ { ๐‘ข , ๐‘ฃ } โˆˆ ๐ธ ( ๐œŒ ( ๐‘ข ) + ๐œŒ ( ๐‘ฃ ) ) ] 2 )
Directed weighted networks โˆ‘ ๐‘Ÿ = ( ๐ป ( ๐‘ข , ๐‘ฃ ) โˆˆ ๐ธ ๎” ๐œ” ( ๐‘ข , ๐‘ฃ ) ๐œŒ ( ๐‘ข ) ๐œŒ ( ๐‘ฃ ) โˆ’ ๐ด ๐ต ) / ( ๐ป โˆ‘ ( ๐‘ข , ๐‘ฃ ) โˆˆ ๐ธ ๐œ” ( ๐‘ข , ๐‘ฃ ) ๐œŒ ( ๐‘ข ) 2 โˆ’ ๐ด 2 ๎” ๐ป โˆ‘ ( ๐‘ข , ๐‘ฃ ) โˆˆ ๐ธ ๐œ” ( ๐‘ข , ๐‘ฃ ) ๐œŒ ( ๐‘ฃ ) 2 โˆ’ ๐ต 2 )
โˆ‘ ๐ด = ( ๐‘ข , ๐‘ฃ ) โˆˆ ๐ธ ๐œ” ( ๐‘ข , ๐‘ฃ ) ๐œŒ ( ๐‘ข )
โˆ‘ ๐ต = ( ๐‘ข , ๐‘ฃ ) โˆˆ ๐ธ ๐œ” ( ๐‘ข , ๐‘ฃ ) ๐œŒ ( ๐‘ฃ )
โˆ‘ ๐ป = ๐‘’ โˆˆ ๐ธ ๐œ” ( ๐‘’ ) is the sum of all values of edges in ๐ธ .

Degree centrality ๐‘ ๐ท ( ๐‘ฃ ) of vertex v
Undirected binary network Degree d e g ( ๐‘ฃ ) of vertex ๐‘ฃ
Directed binary network In-degree ๐‘ ๐‘– ๐ท ( ๐‘ฃ ) = d e g โˆ’ ( ๐‘ฃ )
Out-degree ๐‘ ๐‘œ ๐ท ( ๐‘ฃ ) = d e g + ( ๐‘ฃ )

Strength centrality ๐‘ ๐‘† ( ๐‘ฃ )
Greyscale symmetric network Strength ๐‘  ( ๐‘ฃ ) of vertex ๐‘ฃ
Greyscale assymetric network In-strength: ๐‘ ๐‘– ๐‘† ( ๐‘ฃ ) = ๐‘  โˆ’ ( ๐‘ฃ )
Out-strength: ๐‘ ๐‘œ ๐‘† ( ๐‘ฃ ) = ๐‘  + ( ๐‘ฃ )

Shortest-path Efficiency ๐‘ ๐ธ ๐‘“ ( ๐‘ฃ ) = ( 1 / ๐‘› ๐ธ ๐‘“ ) โˆ‘ ๐‘ข โ‰  ๐‘ฃ 1 / ๐‘‘ ๐บ ( ๐‘ฃ , ๐‘ข ) , where ๐‘› ๐ธ ๐‘“ = ๐‘› โˆ’ 1

Shortest-path Betweeness centrality ๐‘ ๐ต ( ๐‘ฃ ) of a vertex ๐‘ฃ โˆˆ ๐‘‰ ๐‘ ๐ต ( ๐‘ฃ ) = ( 1 / ๐‘› ๐ต ) โˆ‘ ๐‘  โˆˆ ๐‘‰ โงต { ๐‘ฃ } โˆ‘ ๐‘ก โˆˆ ๐‘‰ โงต { ๐‘ฃ , ๐‘  } ( ๐œŽ ๐‘  ๐‘ก ( ๐‘ฃ ) / ๐œŽ ๐‘  ๐‘ก ) , where ๐œŽ ๐‘  ๐‘ก is the number of shortest ( ๐‘  , ๐‘ก ) -paths
๐œŽ ๐‘  ๐‘ก ( ๐‘ฃ ) is the number of shortest ( ๐‘  , ๐‘ก ) -paths passing through some vertex ๐‘ฃ other than ๐‘  , ๐‘ก and ๐‘› ๐ต = ( ๐‘› โˆ’ 1 ) ( ๐‘› โˆ’ 2 ) is a normalizing constant.

Bonacich's eigenvector centrality ๐œ† ๐‘ ( ๐‘ฃ ๐‘– โˆ‘ ) = ๐‘› ๐‘— = 1 ๐‘ค ๐‘— ๐‘– ๐‘ ( ๐‘ฃ ๐‘— )
In matrix notation with ๐œ = [ ๐‘ ( ๐‘ฃ 1 ) , ๐‘ ( ๐‘ฃ 2 ) , โ€ฆ , ๐‘ ( ๐‘ฃ ๐‘› ) ] ๐‘‡ , this yields:
๐œ† ๐œ = ๐‘Š ๐‘‡ ๐œ .
This type of equation is well known and solved by the eigenvalues and eigenvectors of ๐‘Š ๐‘‡ .
We call the eigenvector ๐ฌ = [ ๐‘  1 , โ€ฆ , ๐‘  ๐‘› ] ๐‘‡ of the maximal eigenvalue of ๐œ† ๐œ = ๐‘Š ๐‘‡ ๐œ principal eigenvector. Then, the eigenvector centrality of node ๐‘ฃ ๐‘– is defined as: ๐‘ ๐ธ ๐‘‰ ( ๐‘ฃ ๐‘– ) = | ๐‘  ๐‘– | / โ€– ๐ฌ โ€– ๐‘ ,
where the centrality vector ๐ฌ is normalized by dividing it by its ๐‘ -norm
โ€– ๐ฌ โ€– ๐‘ โˆ‘ = ( ๐‘› ๐‘– = 1 | ๐‘  ๐‘– | ๐‘ ) 1 / ๐‘ 1 โ‰ค ๐‘ < โˆž , and โ€– ๐ฌ โ€– ๐‘ = m a x ๐‘– = 1 , โ€ฆ , ๐‘› { | ๐‘  ๐‘– | } ๐‘ = โˆž to produce centrality scores ๐‘ ( ๐‘ฃ ๐‘– ) โ‰ค 1 .

Hubbell's centrality ๐œ = ๐›ผ ๐‘Š ๐‘‡ ๐œ + ๐ž where ๐œ = [ ๐‘ ( ๐‘ฃ 1 ) , ๐‘ ( ๐‘ฃ 2 ) , โ€ฆ , ๐‘ ( ๐‘ฃ ๐‘› ) ] ๐‘‡ and ๐ž = [ ๐‘’ 1 , ๐‘’ 2 โ€ฆ , ๐‘’ ๐‘› ] ๐‘‡ .
In order to get meaningful results, ๐›ผ should be chosen according to restriction | ๐›ผ | < 1 / ๐œ† 1 , where ๐œ† 1 is the maximum value of an eigenvalue of ๐‘Š .
This restriction is not mentioned in the literature.

Subgraph centrality of vertex ๐‘ฃ ๐‘– It is given by the ๐‘– th diagonal entry of the ๐‘˜ th power of the adjacency matrix, ๐ด
๐‘ ๐‘† ๐บ ( ๐‘ฃ ๐‘– โˆ‘ ) = โˆž ๐‘˜ = 0 ๐œ‡ ๐‘˜ ( ๐‘– ) / ๐‘˜ ! with number of closed walks: ๐œ‡ ๐‘˜ ( ๐‘– ) = ( ๐ด ๐‘˜ ) ๐‘– ๐‘– .
This measure generalizes to greyscale networks by substituting matrix ๐‘Š for ๐ด .
Network entropy ๎ โˆ‘ ๐ป ( ๐‘ƒ ) = โˆ’ ๐‘– , ๐‘— ๐œ‹ ๐‘– ฬ‚ ๐‘ ๐‘– ๐‘— l o g ฬ‚ ๐‘ ๐‘– ๐‘— = โˆ‘ ๐‘– ๐œ‹ ๐‘– ๐ป ๐‘–
To produce the above equation, we have set a Markov matrix ๐‘ƒ = [ ๐‘ ๐‘– ๐‘— ] be the stochastic process which defines the information source and its stationary distribution ๐œ‹ โˆถ ๐œ‹ ๐‘ƒ = ๐œ‹ .