About this Journal Submit a Manuscript Table of Contents
Computational Intelligence and Neuroscience
Volume 2011 (2011), Article ID 923703, 13 pages
http://dx.doi.org/10.1155/2011/923703
Research Article

Forward Field Computation with OpenMEEG

1Parietal Project Team, INRIA Saclay Ile-de-France, Neurospin-CEA, Bât 145, Point Courrier 156, 91191 Gif/Yvette, France
2Athena Project Team, INRIA Sophia Antipolis-Méditerranée, 2004, Route des Lucioles, 06902 Sophia Antipolis, France

Received 14 September 2010; Revised 14 December 2010; Accepted 17 January 2011

Academic Editor: Sylvain Baillet

Copyright © 2011 Alexandre Gramfort et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Ramon, P. H. Schimpf, and J. Haueisen, “Influence of head models on EEG simulations and inverse source localizations,” BioMedical Engineering Online, vol. 5, no. 5, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. N. Von Ellenrieder, C. H. Muravchik, and A. Nehorai, “Effects of geometric head model perturbations on the EEG forward and inverse problems,” IEEE Transactions on Biomedical Engineering, vol. 53, no. 3, pp. 421–429, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. R. Van Uitert, C. Johnson, and L. Zhukov, “Influence of head tissue conductivity in forward and inverse magnetoencephalographic simulations using realistic head models,” IEEE Transactions on Biomedical Engineering, vol. 51, no. 12, pp. 2129–2137, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. A. C. Barnard, I. M. Duck, and M. S. Lynn, “The application of electromagnetic theory to electrocardiology. I. Derivation of the integral equations,” Biophysical Journal, vol. 7, no. 5, pp. 443–462, 1967. View at Scopus
  5. A. C. Barnard, I. M. Duck, M. S. Lynn, and W. P. Timlake, “The application of electromagnetic theory to electrocardiology. II. Numerical solution of the integral equations,” Biophysical Journal, vol. 7, no. 5, pp. 463–491, 1967. View at Scopus
  6. D. B. Geselowitz, “On bioelectric potentials in an inhomogeneous volume conductor,” Biophysics Journal, vol. 7, pp. 1–11, 1967.
  7. J. C. De Munck, “A linear discretization of the volume conductor boundary integral equation using analytically integrated elements,” IEEE Transactions on Biomedical Engineering, vol. 39, no. 9, pp. 986–990, 1992. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. J. C. Mosher, R. M. Leahy, and P. S. Lewis, “EEG and MEG: forward solutions for inverse methods,” IEEE Transactions on Biomedical Engineering, vol. 46, no. 3, pp. 245–259, 1999. View at Scopus
  9. N. G. Gençer and I. O. Tanzer, “Forward problem solution of electromagnetic source imaging using a new BEM formulation with high-order elements,” Physics in Medicine and Biology, vol. 44, no. 9, pp. 2275–2287, 1999. View at Publisher · View at Google Scholar · View at Scopus
  10. M. S. Hamalainen and J. Sarvas, “Realistic conductivity geometry model of the human head for interpretation of neuromagnetic data,” IEEE Transactions on Biomedical Engineering, vol. 36, no. 2, pp. 165–171, 1989. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. J. Kybic, M. Clerc, T. Abboud, O. Faugeras, R. Keriven, and T. Papadopoulo, “A common formalism for the integral formulations of the forward EEG problem,” IEEE Transactions on Medical Imaging, vol. 24, no. 1, pp. 12–28, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Kybic, M. Clerc, O. Faugeras, R. Keriven, and T. Papadopoulo, “Fast multipole acceleration of the MEG/EEG boundary element method,” Physics in Medicine and Biology, vol. 50, no. 19, pp. 4695–4710, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. J. Kybic, M. Clerc, O. Faugeras, R. Keriven, and T. Papadopoulo, “Generalized head models for MEG/EEG: boundary element method beyond nested volumes,” Physics in Medicine and Biology, vol. 51, no. 5, pp. 1333–1346, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. S. Gonçalves, J. C. De Munck, J. P.A. Verbunt, R. M. Heethaar, and F. H. Lopes da Silva, “In vivo measurement of the brain and skull resistivities using an EIT-based method and the combined analysis of SEF/SEP data,” IEEE Transactions on Biomedical Engineering, vol. 50, no. 9, pp. 1124–1128, 2003. View at Publisher · View at Google Scholar · View at PubMed
  15. C. H. Wolters, S. Lew, R. S. MacLeod, and M. S. Hämäläinen, “Combined EEG/MEG source analysis using calibrated finite elementhead models,” in Proceedings of the 4th Annual Conference of the German Society for Biomedical Engineering (DGBMT '10), Rostock-Warnemünde, Germany, October 2010.
  16. S. Vallaghé and M. Clerc, “A global sensitivity analysis of three- and four-layer EEG conductivity models,” IEEE Transactions on Biomedical Engineering, vol. 56, no. 4, pp. 988–995, 2009. View at Publisher · View at Google Scholar · View at PubMed
  17. M. Clerc, J.-M. Badier, G. Adde, J. Kybic, and T. Papadopoulo, “Boundary element formulation for electrical impedance tomography,” in ESAIM: Proceedings, vol. 14, pp. 63–71, EDP Sciences, 2005.
  18. A. Gramfort, T. Papadopoulo, E. Olivi, and M. Clerc, “OpenMEEG: opensource software for quasistatic bioelectromagnetics,” BioMedical Engineering Online, vol. 9, article 45, 2010. View at Publisher · View at Google Scholar · View at PubMed
  19. J. W. H. Meijs, O. W. Weier, M. J. Peters, and A. Van Oosterom, “On the numerical accuracy of the boundary element method,” IEEE Transactions on Biomedical Engineering, vol. 36, no. 10, pp. 1038–1049, 1989. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. C. Phillips, Source estimation in eeg, Ph.D. dissertation, Université de Liège, 2000.
  21. SimBio Development Group, “SimBio: a generic environment forbio-numerical simulations,” November 2010, https://www.mrt.uni-jena.de/simbio.
  22. T. F. Oostendorp and A. Van Oosterom, “Source parameter estimation in inhomogeneous volume conductors of arbitrary shape,” IEEE Transactions on Biomedical Engineering, vol. 36, no. 3, pp. 382–391, 1989. View at Scopus
  23. M. Stenroos, V. Mäntynen, and J. Nenonen, “A Matlab library for solving quasi-static volume conduction problems using the boundary element method,” Computer Methods and Programs in Biomedicine, vol. 88, no. 3, pp. 256–263, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. F. Zanow and T. R. Knösche, “ASA—advanced source analysis of continuous and event-related EEG/MEG signals,” Brain Topography, vol. 16, no. 4, pp. 287–290, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. C. H. Wolters, H. Köstler, C. Möller, J. Härdtlein, L. Grasedyck, and W. Hackbusch, “Numerical Mathematics of the subtraction method for the modeling of a current dipole in EEG source reconstruction using finite element head models,” SIAM Journal on Scientific Computing, vol. 30, no. 1, pp. 24–45, 2007. View at Publisher · View at Google Scholar
  26. M. Dannhauer, B. Lanfer, C. H. Wolters, and T. R. Knösche, “Modeling of the human skull in EEG source analysis,” Human Brain Mapping. In press. View at Publisher · View at Google Scholar · View at PubMed
  27. S. Lew, C. H. Wolters, T. Dierkes, C. Röer, and R. S. MacLeod, “Accuracy and run-time comparison for different potential approaches and iterative solvers in finite element method based EEG source analysis,” Applied Numerical Mathematics, vol. 59, no. 8, pp. 1970–1988, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. Prabhu Ramachandran and Gael Varoquaux, “Mayavi: 3D Visualization of Scientific Data,” Computing in Science & Engineering, vol. 13, no. 2, pp. 40–51, 2011. View at Publisher · View at Google Scholar