About this Journal Submit a Manuscript Table of Contents
Computational Intelligence and Neuroscience
Volume 2011 (2011), Article ID 938925, 14 pages
http://dx.doi.org/10.1155/2011/938925
Research Article

Ragu: A Free Tool for the Analysis of EEG and MEG Event-Related Scalp Field Data Using Global Randomization Statistics

1Department of Psychiatric Neurophysiology, University Hospital of Psychiatry Bern, University of Bern, 3000 Bern 60, Bolligenstr. 111, Switzerland
2Neuroinformatics Department, Cuban Neuroscience Center, Havana 15202, Cuba

Received 30 September 2010; Revised 7 December 2010; Accepted 31 December 2010

Academic Editor: Sylvain Baillet

Copyright © 2011 Thomas Koenig et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. C. Mosher, R. M. Leahy, and P. S. Lewis, “EEG and MEG: forward solutions for inverse methods,” IEEE Transactions on Biomedical Engineering, vol. 46, no. 3, pp. 245–259, 1999.
  2. T. Koenig and L. Melie-García, “A method to determine the presence of averaged event-related fields using randomization tests,” Brain Topography, vol. 3, pp. 233–242, 2010. View at Publisher · View at Google Scholar · View at PubMed
  3. T. Koenig and L. Melie-Garcia, “Statistical analysis of multichannel scalp field data,” in Electrical Neuroimaging, C. M. Michel, T. Koenig, D. Brandeis, L. R. R. Gianotti, and J. Wackermann, Eds., pp. 169–189, Cambridge University Press, Cambridge, UK, 2009.
  4. T. Koenig, L. Melie-García, M. Stein, W. Strik, and C. Lehmann, “Establishing correlations of scalp field maps with other experimental variables using covariance analysis and resampling methods,” Clinical Neurophysiology, vol. 119, no. 6, pp. 1262–1270, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. W. K. Strik, A. J. Fallgatter, D. Brandeis, and R. D. Pascual-Marqui, “Three-dimensional tomography of event-related potentials during response inhibition: evidence for phasic frontal lobe activation,” Electroencephalography and Clinical Neurophysiology, vol. 108, no. 4, pp. 406–413, 1998. View at Publisher · View at Google Scholar
  6. D. Lehmann and W. Skrandies, “Reference-free identification of components of checkerboard-evoked multichannel potential fields,” Electroencephalography and Clinical Neurophysiology, vol. 48, no. 6, pp. 609–621, 1980. View at Publisher · View at Google Scholar · View at Scopus
  7. D. Lehmann and W. Skrandies, “Spatial analysis of evoked potentials in man-a review,” Progress in Neurobiology, vol. 23, no. 3, pp. 227–250, 1984. View at Scopus
  8. B. F. J. Manly, Randomization, Bootstrap and Monte Carlo Methods in Biology, Chapman & Hall, Boca Raton, Fla, USA, 2007.
  9. T. E. Nichols and A. P. Holmes, “Nonparametric permutation tests for functional neuroimaging: a primer with examples,” Human Brain Mapping, vol. 15, no. 1, pp. 1–25, 2002. View at Publisher · View at Google Scholar · View at PubMed
  10. E. R. John, P. Easton, L. S. Prichep, and J. Friedman, “Standardized varimax descriptors of event related potentials: basic considerations,” Brain Topography, vol. 6, no. 2, pp. 143–162, 1993.
  11. J. Wackermann, “Towards a quantitative characterisation of functional states of the brain: from the non-linear methodology to the global linear description,” International Journal of Psychophysiology, vol. 34, no. 1, pp. 65–80, 1999. View at Publisher · View at Google Scholar
  12. M. Stein, T. Dierks, D. Brandeis, M. Wirth, W. Strik, and T. Koenig, “Plasticity in the adult language system: a longitudinal electrophysiological study on second language learning,” NeuroImage, vol. 33, no. 2, pp. 774–783, 2006. View at Publisher · View at Google Scholar · View at PubMed
  13. M. Kutas and S. A. Hillyard, “Reading senseless sentences: brain potentials reflect semantic incongruity,” Science, vol. 207, no. 4427, pp. 203–205, 1980.