About this Journal Submit a Manuscript Table of Contents
Computational Intelligence and Neuroscience
Volume 2012 (2012), Article ID 795291, 10 pages
http://dx.doi.org/10.1155/2012/795291
Research Article

Development of a Scheme and Tools to Construct a Standard Moth Brain for Neural Network Simulations

1School of Human Science and Environment, University of Hyogo, 1-1-12 Shinzaike-Honcho, Himeji, Hyogo 670-0092, Japan
2Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan
3College of Information Science and Engineering, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan

Received 27 April 2012; Revised 5 July 2012; Accepted 10 July 2012

Academic Editor: Shinichi Tamura

Copyright © 2012 Hidetoshi Ikeno et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. S. Haupt, T. Sakurai, S. Namiki, T. Kazawa, and R. Kanzaki, “Olfactory information processing in moths,” in The Neurobiology of Olfaction, A. Menini, Ed., chapter 3, CRC Press, 2010.
  2. M. Hammer and R. Menzel, “Learning and memory in the honeybee,” Journal of Neuroscience, vol. 15, no. 3, pp. 1617–1630, 1995. View at Scopus
  3. J. D. Armstong and J. I. Van Hemert, “Towards a virtual fly brain,” Philosophical Transactions of the Royal Society A, vol. 367, no. 1896, pp. 2387–2397, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. C. M. Comer and R. M. Robertson, “Identified nerve cells and insect behavior,” Progress in Neurobiology, vol. 63, no. 4, pp. 409–439, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Mishima and R. Kanzaki, “Physiological and morphological characterization of olfactory descending interneurons of the male silkworm moth, Bombyx mori,” Journal of Comparative Physiology—A, vol. 184, no. 2, pp. 143–160, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Hampel, P. Chung, C. E. McKellar, D. Hall, L. L. Looger, and J. H. Simpson, “Drosophila Brainbow: a recombinase-based fluorescence labeling technique to subdivide neural expression patterns,” Nature Methods, vol. 8, no. 3, pp. 253–259, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Fujiwara, T. Kazawa, S. S. Haupt, and R. Kanzaki, “Ca2+ imaging of identifiable neurons labeled by electroporation in insect brains,” NeuroReport, vol. 20, no. 12, pp. 1061–1065, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. J. D. Seelig, M. E. Chiappe, G. K. Lott et al., “Two-photon calcium imaging from head-fixed Drosophila during optomotor walking behavior,” Nature Methods, vol. 7, no. 7, pp. 535–540, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Kanzaki, K. Soo, Y. Seki, and S. Wada, “Projections to higher olfactory centers from subdivisions of the antennal lobe macroglomerular complex of the male silkmoth,” Chemical Senses, vol. 28, no. 2, pp. 113–130, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. R. Kanzaki, S. Nagasawa, and I. Shimoyama, “Neural basis of odor-source searching behavior in insect microbrain systems evaluated with a mobile robot,” in Bio-Mechanisms of Swimming and Flying, K. Kato, J. Ayers, and H. Morikawa, Eds., pp. 155–169, Springer, Tokyo, Japan, 2004.
  11. M. Iwano, E. S. Hill, A. Mori et al., “Neurons associated with the flip-flop activity in the lateral accessory lobe and ventral protocerebrum of the silkworm moth brain,” Journal of Comparative Neurology, vol. 518, no. 3, pp. 366–388, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. K. Rein, M. Zöckler, M. T. Mader, C. Grübel, and M. Heisenberg, “The Drosophila standard brain,” Current Biology, vol. 12, no. 3, pp. 227–231, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Otsuna and K. Ito, “Systematic analysis of the visual projection neurons of Drosophila melanogaster. I. Lobula-specific pathways,” Journal of Comparative Neurology, vol. 497, no. 6, pp. 928–958, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. A. S. Chiang, C. Y. Lin, C. C. Chuang et al., “Three-dimensional reconstruction of brain-wide wiring networks in drosophila at single-cell resolution,” Current Biology, vol. 21, no. 1, pp. 1–11, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. R. Brandt, T. Rohlfing, J. Rybak et al., “Three-dimensional average-shape atlas of the honeybee brain and its applications,” Journal of Comparative Neurology, vol. 492, no. 1, pp. 1–19, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Rybak, A. Kuß, H. Lamecker et al., “The digital bee brain: integrating and managing neurons in a common 3D reference system,” Frontiers in Systems Neuroscience, vol. 4, article 30, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Kvello, B. B. Løfaldli, J. Rybak, R. Menzel, and H. Mustaparta, “Digital, three-dimensional average shaped atlas of the Heliothis virescens brain with integrated gustatory and olfactory neurons,” Frontiers in Systems Neuroscience, vol. 3, article 14, 2009.
  18. W. Huetteroth and J. Schachtner, “Standard three-dimensional glomeruli of the Manduca sexta antennal lobe: a tool to study both developmental and adult neuronal plasticity,” Cell and Tissue Research, vol. 319, no. 3, pp. 513–524, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. A. E. Kurylas, T. Rohlfing, S. Krofczik, A. Jenett, and U. Homberg, “Standardized atlas of the brain of the desert locust, Schistocerca gregaria,” Cell and Tissue Research, vol. 333, no. 1, pp. 125–145, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. B. el Jundi, S. Heinze, C. Lenschow, A. Kurylas, T. Rohlfing, and U. Homberg, “The locust standard brain: a 3D standard of the central complex as a platform for neural network analysis,” Frontiers in Systems Neuroscience, vol. 3, article 21, 2009.
  21. H. Ai, J. Rybak, R. Menzel, and T. Itoh, “Response characteristics of vibration-sensitive interneurons related to Johnston's organ in the honeybee, Apis mellifera,” Journal of Comparative Neurology, vol. 515, no. 2, pp. 145–160, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. W. Huetteroth, B. el Jundi, S. el Jundi, and J. Schachtner, “3D-reconstructions and virtual 4D-visualization to study metamorphic brain development in the sphinx moth Manduca sexta,” Frontiers in Systems Neuroscience, vol. 4, article 7, 2010.
  23. T. Kazawa, H. Ikeno, and R. Kanzaki, “Development and application of a neuroinformatics environment for neuroscience and neuroethology,” Neural Networks, vol. 21, no. 8, pp. 1047–1055, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Jenett, J. E. Schindelin, and M. Heisenberg, “The virtual insect brain protocol: creating and comparing standardized neuroanatomy,” BMC Bioinformatics, vol. 7, article 544, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. B. Schmid, J. Schindelin, A. Cardona, M. Longair, and M. Heisenberg, “A high-level 3D visualization API for Java and ImageJ,” BMC Bioinformatics, vol. 11, article 274, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. P. A. Andres and R. A. Isoardi, “Using ITK platform for medical image registration,” Journal of Physics, vol. 90, no. 1, Article ID 012056, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Rodriguez, D. B. Ehlenberger, P. R. Hof, and S. L. Wearne, “Three-dimensional neuron tracing by voxel scooping,” Journal of Neuroscience Methods, vol. 184, no. 1, pp. 169–175, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. M. L. Hines and N. T. Carnevale, “NEURON: a tool for neuroscientists,” Neuroscientist, vol. 7, no. 2, pp. 123–135, 2001. View at Scopus
  29. K. A. Al-Kofahi, A. Can, S. Lasek et al., “Median-based robust algorithms for tracing neurons from noisy confocal microscope images,” IEEE Transactions on Information Technology in Biomedicine, vol. 7, no. 4, pp. 302–317, 2003. View at Publisher · View at Google Scholar · View at Scopus