About this Journal Submit a Manuscript Table of Contents
Computational Intelligence and Neuroscience
Volume 2012 (2012), Article ID 850259, 10 pages
http://dx.doi.org/10.1155/2012/850259
Research Article

Intelligent Agent-Based Intrusion Detection System Using Enhanced Multiclass SVM

Department of Information Science and Technology, Faculty of Information and Communication Engineering, Anna University, Guindy, Chennai 600025, India

Received 14 March 2012; Revised 1 July 2012; Accepted 5 July 2012

Academic Editor: W. J. Chris Zhang

Copyright © 2012 S. Ganapathy et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Ganapathy, N. Jaisankar, P. Yogesh, and A. Kannan, “An intelligent intrusion detection system using outlier detection and multiclass SVM,” International Journal on Recent Trends in Engineering & Technology, vol. 05, no. 01, 2011.
  2. I. M. Hegazy, T. Al-Arif, Z. T. Fayed, and H. M. Faheem, “A multi-agent based system for intrusion detection,” IEEE Potentials, vol. 22, no. 4, pp. 28–31, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. J. S. Balasubramaniyan, J. O. Garcia-Fernandez, D. Isacoff, E. Spafford, and D. Zamboni, “An architecture for intrusion detection using autonomous agents,” in Proceedings of 14th Annual Conference on Computer Security Applications, pp. 13–24, Phoenix, Ariz, USA, 1998. View at Publisher · View at Google Scholar
  4. F. Angiulli, S. Basta, and C. Pizzuti, “Distance-based detection and prediction of outliers,” IEEE Transactions on Knowledge and Data Engineering, vol. 18, no. 2, pp. 145–160, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Ganapathy, P. Yogesh, and A. Kannan, “An intelligent intrusion detection system for mobile ad-hoc networks using classification techniques,” Communications in Computer and Information Science, vol. 148, pp. 117–122, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Ganapathy, N. Jaisankar, P. Yogesh, and A. Kannan, “An intelligent system for intrusion detection using outlier detection,” in Proceedings of the IEEE-International Conference on Recent Trends in Information Technology, pp. 119–123, 2011.
  7. A. A. Bakar, Z. A. Othman, A. R. Hamdan, R. Yusof, and R. Ismail, “An agent based rough classifier for data mining,” in Proceedings of the 8th International Conference on Intelligent Systems Design and Applications (ISDA'08), pp. 145–151, Kaohsiung City, Taiwan, November 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Tweedale, A. Quteishat, C. Peng Lim, and L. C. Jain, “A neural network-based multi-agent classifier system,” Neurocomputing, vol. 72, no. 7–9, pp. 1639–1647, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. J. S. Wang and J. C. Chiang, “A cluster validity measure with outlier detection for support vector clustering,” IEEE Transactions on Systems, Man, and Cybernetics B, vol. 38, no. 1, pp. 78–89, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. S. A. Mulay, P. R. Devale, and G. V. Garje, “Intrusion detection system using support vector machine and decision tree,” International Journal of Computer Applications, vol. 3, no. 3, pp. 0975–8887, 2010.
  11. S. Mukkamala and A. H. Sung, “Detecting denial of service attacks using support vector machines,” in Proceedings of the IEEE International conference on Fuzzy Systems, pp. 1231–1236, May 2003. View at Scopus
  12. D. M. Farid, J. Darmont, N. Harbi, N. H. Hoa, and M. Z. Rahman, “Adaptive network intrusion detection learning: attribute selection and classification,” Proceedings of World Academy of Science, Engineering and Technology, vol. 60, pp. 154–158, 2009. View at Scopus
  13. C. Yang, H. Ge, G. Yao, and L. Ma, “Quick complete attribute reduction algorithm,” in Proceedings of the 6th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD'09), pp. 576–580, Tianjin, China, August 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Teng, J. Wu, J. Sun, S. Zhou, and G. Liu, “An efficient attribute reduction algorithm,” in Proceedings of the IEEE International Conference on Advanced Computer Control (ICACC'10), pp. 471–475, March 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. W. Wang, X. Zhang, S. Gombault, and S. J. Knapskog, “Attribute normalization in network intrusion detection,” in Proceedings of the 10th International Symposium on Pervasive Systems, Algorithms, and Networks (I-SPAN'09), pp. 448–453, IEEE, Kaohsiung City, Taiwan, December 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. F. Abdel-Fattah, Z. M. Dahalin, and S. Jusoh, “Dynamic intrusion detection method for mobile AdHoc networks using CPDOD algorithm,” International Journal of Computer Applications, vol. 12, no. 5, pp. 22–29, 2010, IJCA Special Issues on Mobile Ad-hoc Networks MANETs. View at Publisher · View at Google Scholar
  17. M. Teng, “Anomaly detection on time series,” in Proceedings of the 1st IEEE International Conference on Progress in Informatics and Computing (PIC'10), vol. 1, pp. 603–608, Shanghai, China, December 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. “KDD Cup 1999,” October 2007, http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.