About this Journal Submit a Manuscript Table of Contents
Computational Intelligence and Neuroscience
Volume 2013 (2013), Article ID 294878, 19 pages
http://dx.doi.org/10.1155/2013/294878
Research Article

Hippocampal Anatomy Supports the Use of Context in Object Recognition: A Computational Model

1Graduate Program in Applied Mathematics, University of Arizona, Tucson, AZ 8572, USA
2HRL Laboratories, LLC, Malibu, CA 90265, USA
3Department of Psychology, University of Arizona, Tucson, AZ 8572, USA

Received 21 December 2012; Revised 26 March 2013; Accepted 4 May 2013

Academic Editor: Giorgio Ascoli

Copyright © 2013 Patrick Greene et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. P. Witter, G. W. Van Hoesen, and D. G. Amaral, “Topographical organization of the entorhinal projection to the dentate gyrus of the monkey,” Journal of Neuroscience, vol. 9, no. 1, pp. 216–228, 1989. View at Scopus
  2. J. K. Leutgeb, S. Leutgeb, M. B. Moser, and E. I. Moser, “Pattern separation in the dentate gyrus and CA3 of the hippocampus,” Science, vol. 315, no. 5814, pp. 961–966, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. C. B. Alme, R. A. Buzzetti, D. F. Marrone et al., “Hippocampal granule cells opt for early retirement,” Hippocampus, vol. 20, no. 10, pp. 1109–1123, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. W. Deng, M. Mayford, and F. H. Gage, “Selection of distinct populations of dentate granule cells in response to inputs as a mechanism for pattern separation in mice,” ELife, vol. 2, Article ID e00312, 2013. View at Publisher · View at Google Scholar
  5. L. M. Rangel and H. Eichenbaum, “What's new is older,” ELife, vol. 2, Article ID e00605, 2013. View at Publisher · View at Google Scholar
  6. R. C. O'Reilly and J. W. Rudy, “Conjunctive representations in learning and memory: principles of cortical and hippocampal function,” Psychological Review, vol. 108, no. 2, pp. 311–345, 2001. View at Publisher · View at Google Scholar
  7. A. Treves and E. T. Rolls, “Computational analysis of the role of the hippocampus in memory,” Hippocampus, vol. 4, no. 3, pp. 374–391, 1994. View at Publisher · View at Google Scholar · View at Scopus
  8. M. P. Witter, “Intrinsic and extrinsic wiring of CA3: indications for connectional heterogeneity,” Learning & Memory, vol. 14, no. 11, pp. 705–713, 2007.
  9. S. Zola-Morgan, L. R. Squire, and D. G. Amaral, “Human amnesia and the medial temporal region: enduring memory impairment following a bilateral lesion limited to field CA1 of the hippocampus,” Journal of Neuroscience, vol. 6, no. 10, pp. 2950–2967, 1986. View at Scopus
  10. M. R. Hunsaker, G. G. Mooy, J. S. Swift, and R. P. Kesner, “Dissociations of the medial and lateral perforant path projections into dorsal DG, CA3, and CA1 for spatial and nonspatial (visual object) information processing,” Behavioral Neuroscience, vol. 121, no. 4, pp. 742–750, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. M. R. Hunsaker, P. M. Fieldsted, J. S. Rosenberg, and R. P. Kesner, “Dissociating the roles of dorsal and ventral CA1 for the temporal processing of spatial locations, visual objects, and odors,” Behavioral Neuroscience, vol. 122, no. 3, pp. 643–650, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. R. D. Burwell, “The parahippocampal region: corticocortical connectivity,” Annals of the New York Academy of Sciences, vol. 911, pp. 25–42, 2000. View at Scopus
  13. C. B. Cave and L. R. Squire, “Equivalent impairment of spatial and nonspatial memory following damage to the human hippocampus,” Hippocampus, vol. 1, no. 3, pp. 329–340, 1991. View at Scopus
  14. E. L. Hargreaves, G. Rao, I. Lee, and J. J. Knierim, “Neuroscience: major dissociation between medial and lateral entorhinal input to dorsal hippocampus,” Science, vol. 308, no. 5729, pp. 1792–1794, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Dennis and M. S. Humphreys, “A context noise model of episodic word recognition,” Psychological Review, vol. 108, no. 2, pp. 452–478, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Gaskin, A. Gamliel, M. Tardif, E. Cole, and D. G. Mumby, “Incidental (unreinforced) and reinforced spatial learning in rats with ventral and dorsal lesions of the hippocampus,” Behavioural Brain Research, vol. 202, no. 1, pp. 64–70, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. M. B. Moser and E. I. Moser, “Functional differentiation in the hippocampus,” Hippocampus, vol. 8, no. 6, pp. 608–619, 1998.
  18. R. E. Clark, S. M. Zola, and L. R. Squire, “Impaired recognition memory rats after damage to the hippocampus,” Journal of Neuroscience, vol. 20, no. 23, pp. 8853–8860, 2000. View at Scopus
  19. M. N. De Lima, T. Luft, R. Roesler, and N. Schröder, “Temporary inactivation reveals an essential role of the dorsal hippocampus in consolidation of object recognition memory,” Neuroscience Letters, vol. 405, no. 1-2, pp. 142–146, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. O. Hardt, P. V. Migues, M. Hastings, J. Wong, and K. Nader, “PKMζ maintains 1-day- and 6-day-old long-term object location but not object identity memory in dorsal hippocampus,” Hippocampus, vol. 20, no. 6, pp. 691–695, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. D. G. Mumby, S. Gaskin, M. J. Glenn, T. E. Schramek, and H. Lehmann, “Hippocampal damage and exploratory preferences in rats: memory for objects, places, and contexts,” Learning and Memory, vol. 9, no. 2, pp. 49–57, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. J. A. Ainge, C. Heron-Maxwell, P. Theofilas, P. Wright, L. De Hoz, and E. R. Wood, “The role of the hippocampus in object recognition in rats: examination of the influence of task parameters and lesion size,” Behavioural Brain Research, vol. 167, no. 1, pp. 183–195, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. J. R. Manns and H. Eichenbaum, “A cognitive map for object memory in the hippocampus,” Learning and Memory, vol. 16, no. 10, pp. 616–624, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. R. S. Rosenbaum, S. Köhler, D. L. Schacter et al., “The case of K.C.: contributions of a memory-impaired person to memory theory,” Neuropsychologia, vol. 43, no. 7, pp. 989–1021, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Corkin, “Lasting consequences of bilateral medial temporal lobectomy: clinical course and experimental findings in H.M,” Seminars in Neurology, vol. 4, no. 2, pp. 249–259, 1984.
  26. K. A. Paller and G. McCarthy, “Field potentials in the human hippocampus during the encoding and recognition of visual stimuli,” Hippocampus, vol. 12, no. 3, pp. 415–420, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. G. Fernández, H. Weyerts, M. Schrader-Bölsche et al., “Successful verbal encoding into episodic memory engages the posterior hippocampus: a parametrically analyzed functional magnetic resonance imaging study,” Journal of Neuroscience, vol. 18, no. 5, pp. 1841–1847, 1998. View at Scopus
  28. C. E. Stern, S. Corkin, R. G. González et al., “The hippocampal formation participates in novel picture encoding: evidence from functional magnetic resonance imaging,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 16, pp. 8660–8665, 1996. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Poppenk, H. Evensmoen, M. Moscovitch, and L. Nadel, “Long-axis specialization of the human hippocampus,” Trends in Cognitive Sciences, vol. 17, no. 5, pp. 230–240, 2013. View at Publisher · View at Google Scholar
  30. A. Hupbach, O. Hardt, R. Gomez, and L. Nadel, “The dynamics of memory: context-dependent updating,” Learning and Memory, vol. 15, no. 8, pp. 574–579, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. B. Jones, E. Bukoski, L. Nadel, and J. M. Fellous, “Remaking memories: reconsolidation updates positively motivated spatial memory in rats,” Learning & Memory, vol. 19, no. 3, pp. 91–98, 2012.
  32. R. C. O'Reilly, R. Bhattacharyya, M. D. Howard, and N. Ketz, “Complementary learning systems,” Cognitive Science, pp. 1–20, 2011. View at Publisher · View at Google Scholar
  33. B. Aisa, B. Mingus, and R. O'Reilly, “The emergent neural modeling system,” Neural Networks, vol. 21, no. 8, pp. 1146–1152, 2008. View at Publisher · View at Google Scholar
  34. R. C. O'Reilly and Y. Munakata, Computational Explorations in Cognitive Neuroscience: Understanding the Mind By Simulating the Brain, The MIT Press, Cambridge, Mass, USA, 2000.
  35. V. Cutsuridis, B. Graham, S. R. Cobb, and I. Vida, Hippocampal Microcircuits: A Computational Modelers' Resource Book, Springer, 2010.
  36. E. J. Henriksen, L. L. Colgin, C. A. Barnes, M. P. Witter, M. B. Moser, and E. I. Moser, “Spatial representation along the proximodistal axis of CA1,” Neuron, vol. 68, no. 1, pp. 127–137, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. G. Shepherd and S. Grillner, Handbook of Brain Microcircuits, Oxford Univ Press, Oxford, UK, 2010.
  38. H. Hayashi and Y. Nonaka, “Cooperation and competition between lateral and medial perforant path synapses in the dentate gyrus,” Neural Networks, vol. 24, no. 3, pp. 233–246, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. P. Poirazi, T. Brannon, and B. W. Mel, “Pyramidal neuron as two-layer neural network,” Neuron, vol. 37, no. 6, pp. 989–999, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. P. B. Sederberg, M. W. Howard, and M. J. Kahana, “A context-based theory of recency and contiguity in free recall,” Psychological Review, vol. 115, no. 4, pp. 893–912, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. S. M. Polyn, K. A. Norman, and M. J. Kahana, “A context maintenance and retrieval model of organizational processes in free recall,” Psychological Review, vol. 116, no. 1, pp. 129–156, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. L. Nadel, The Hippocampus and Context Revisited, Hippocampal Place Fields. Oxford Scholarship Online Monographs, 2008.
  43. T. Hafting, M. Fyhn, S. Molden, M. B. Moser, and E. I. Moser, “Microstructure of a spatial map in the entorhinal cortex,” Nature, vol. 436, no. 7052, pp. 801–806, 2005. View at Publisher · View at Google Scholar · View at Scopus