About this Journal Submit a Manuscript Table of Contents
Computational and Mathematical Methods in Medicine
Volume 2012 (2012), Article ID 145926, 9 pages
http://dx.doi.org/10.1155/2012/145926
Research Article

A Novel Approach to Segment and Classify Regional Lymph Nodes on Computed Tomography Images

1School of Computer Science and Engineering, South China University of Technology, Guangzhou 510006, China
2State Key Laboratory of Oncology in Southern China, Imaging Diagnosis and Interventional Center, Cancer Center, Sun Yat-Sen University, Guangzhou 510060, China
3Department of Automation, Sun Yat-Sen University, Guangzhou 510006, China

Received 19 June 2012; Revised 21 September 2012; Accepted 28 September 2012

Academic Editor: Henggui Zhang

Copyright © 2012 Hongmin Cai et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Rosenberg, J. Friederichs, T. Schuster et al., “Prognosis of patients with colorectal cancer is associated with lymph node ratio a single-center analysis of 3026 patients over a 25-year time period,” Annals of Surgery, vol. 248, no. 6, pp. 968–978, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. G. Brown, C. J. Richards, M. W. Bourne et al., “Morphologic predictors of lymph node status in rectal cancer with use of high-spatial-resolution MR imaging with histopathologic comparison,” Radiology, vol. 227, no. 2, pp. 371–377, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. J. H. Kim, G. L. Beets, M. J. Kim, A. G. H. Kessels, and R. G. H. Beets-Tan, “High-resolution MR imaging for nodal staging in rectal cancer: are there any criteria in addition to the size?” European Journal of Radiology, vol. 52, no. 1, pp. 78–83, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. M. J. Lahaye, G. L. Beets, S. M. E. Engelen et al., “Locally advanced rectal cancer: MR imaging for restaging after neoadjuvant radiation therapy with concomitant chemotherapy part II. What are the criteria to predict involved lymph nodes?” Radiology, vol. 252, no. 1, pp. 81–91, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Takemura, A. Shimizu, and K. Hamamoto, “Discrimination of breast tumors in ultrasonic images using an ensemble classifier based on the adaboost algorithm with feature selection,” IEEE Transactions on Medical Imaging, vol. 29, no. 3, pp. 598–609, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. S. Kim, J. H. Kim, S. M. Yoon et al., “Lymph node ratio as a prognostic factor in patients with stage III rectal cancer treated with total mesorectal excision followed by chemoradiotherapy,” International Journal of Radiation Oncology Biology Physics, vol. 74, no. 3, pp. 796–802, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. S. J. Moug, J. D. Saldanha, J. R. McGregor, M. Balsitis, and R. H. Diament, “Positive lymph node retrieval ratio optimises patient staging in colorectal cancer,” British Journal of Cancer, vol. 100, no. 10, pp. 1530–1533, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. V. N. Vapnik, Statistical Learning Theory, Wiley-Interscience, 1998.
  9. L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Physica D, vol. 60, no. 1-4, pp. 259–268, 1992. View at Scopus
  10. T. Chan, J. Shen, and L. Vese, “Variational PDE models in image processing,” Notices of the American Mathematical Society, vol. 50, pp. 14–26, 2003.
  11. P. Perona and J. Malik, “Scale-space and edge detection using anisotropic diffusion,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 12, no. 7, pp. 629–639, 1990. View at Publisher · View at Google Scholar · View at Scopus
  12. D. Barash, “A fundamental relationship between bilateral filtering, adaptive smoothing, and the nonlinear diffusion equation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 6, pp. 844–847, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: active contour models,” International Journal of Computer Vision, vol. 1, pp. 321–332, 1987.
  14. C. Xu and J. L. Prince, “Snakes, shapes, and gradient vector flow,” IEEE Transactions on Image Processing, vol. 7, no. 3, pp. 359–369, 1998. View at Scopus
  15. M. Jacob, T. Blu, and M. Unser, “Efficient energies and algorithms for parametric snakes,” IEEE Transactions on Image Processing, vol. 13, no. 9, pp. 1231–1244, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. N. Ray and S. T. Acton, “Motion gradient vector flow: an external force for tracking rolling leukocytes with shape and size constrained active contours,” IEEE Transactions on Medical Imaging, vol. 23, no. 12, pp. 1466–1478, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. H. Cai, X. Xu, J. Lu, J. W. Lichtman, S. P. Yung, and S. T. C. Wong, “Repulsive force based snake model to segment and track neuronal axons in 3D microscopy image stacks,” NeuroImage, vol. 32, no. 4, pp. 1608–1620, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. X. Xie and M. Mirmehdi, “RAGS: region-aided geometric snake,” IEEE Transactions on Image Processing, vol. 13, no. 5, pp. 640–652, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. K. B. Duan, J. C. Rajapakse, H. Wang, and F. Azuaje, “Multiple SVM-RFE for gene selection in cancer classification with expression data,” IEEE Transactions on Nanobioscience, vol. 4, no. 3, pp. 228–234, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. T. S. Furey, N. Cristianini, N. Duffy, D. W. Bednarski, M. Schummer, and D. Haussler, “Support vector machine classification and validation of cancer tissue samples using microarray expression data,” Bioinformatics, vol. 16, no. 10, pp. 906–914, 2000. View at Scopus
  21. I. Guler and E. Ubeyli, “Multiclass support vector machines for EEG-signals classification,” IEEE Transactions on Information Technology in Biomedicine, vol. 11, pp. 117–126, 2007.
  22. M. Oskoei and H. Hu, “Support vector machine-based classification scheme for myoelectric control applied to upper limb,” IEEE Transactions on Biomedical Engineering, vol. 55, pp. 1956–1965, 2008.
  23. S. Osowski, R. Siroic, T. Markiewicz, and K. Siwek, “Application of support vector machine and genetic algorithm for improved blood cell recognition,” IEEE Transactions on Instrumentation and Measurement, vol. 58, no. 7, pp. 2159–2168, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. J. L. Rojo-Álvarez, J. Bermejo, V. M. Juárez-Caballero et al., “Support vector analysis of color-doppler images: a new approach for estimating indices of left ventricular function,” IEEE Transactions on Medical Imaging, vol. 25, no. 8, pp. 1037–1043, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. L. Wei, Y. Yang, R. M. Nishikawa, and Y. Jiang, “A study on several machine-learning methods for classification of malignant and benign clustered microcalcifications,” IEEE Transactions on Medical Imaging, vol. 24, no. 2, pp. 371–380, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. L. Wei, Y. Yang, R. M. Nishikawa, M. N. Wernick, and A. Edwards, “Relevance vector machine for automatic detection a of clustered microcalcifications,” IEEE Transactions on Medical Imaging, vol. 24, no. 10, pp. 1278–1285, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Kampouraki, G. Manis, and C. Nikou, “Heartbeat time series classification with support vector machines,” IEEE Transactions on Information Technology in Biomedicine, vol. 13, no. 4, pp. 512–518, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Moradi, P. Abolmaesumi, D. R. Siemens, E. E. Sauerbrei, A. H. Boag, and P. Mousavi, “Augmenting detection of prostate cancer in transrectal ultrasound images using SVM and RF time series,” IEEE Transactions on Biomedical Engineering, vol. 56, no. 9, pp. 2214–2224, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. D. Selvathi, R. S. R. Prakash, and S. T. Selvi, “Performance evaluation of kernel based techniques for brain MRI data classification,” in International Conference on Computational Intelligence and Multimedia Applications (ICCIMA '07), vol. 2, pp. 456–460, December 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. M. L. Erickson, “Dissimilarity and the classification of male singing voices,” Journal of Voice, vol. 22, no. 3, pp. 290–299, 2008.