About this Journal Submit a Manuscript Table of Contents
Computational and Mathematical Methods in Medicine
Volume 2012 (2012), Article ID 407805, 14 pages
http://dx.doi.org/10.1155/2012/407805
Research Article

Scaffold Library for Tissue Engineering: A Geometric Evaluation

1Institute of Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
2National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency, 114 Thailand Science Park, Phahonyothin Road, Klong Luang, Pathumthani 12120, Thailand
3Faculty of Dentistry, Thammasat University, Pathumthani 12120, Thailand

Received 12 June 2012; Accepted 9 August 2012

Academic Editor: Quan Long

Copyright © 2012 Nattapon Chantarapanich et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Atala, “Regenerative medicine: past and present,” Medicine Studies, vol. 1, no. 1, pp. 11–31, 2009.
  2. A. Vallet-Pichard, H. Fontaine, V. Mallet, and S. Pol, “VIRAL hepatitis in solid organ transplantation other than liver,” Journal of Hepatology, vol. 55, no. 2, pp. 474–482, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. B. Chernchujit, T. Suntharapa, S. Niampoog, and Y. Siripakarn, “Minimally invasive open wedge high tibial osteotomy with press-fit tricortical bone graft,” Journal of the Medical Association of Thailand, vol. 92, supplement 6, pp. S104–S108, 2009. View at Scopus
  4. A. A. Martinez, A. Calvo, J. Domingo, J. Cuenca, A. Herrera, and M. Malillos, “Allograft reconstruction of segmental defects of the humeral head associated with posterior dislocations of the shoulder,” Injury, vol. 39, no. 3, pp. 319–322, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. R. Salama and S. L. Weissman, “The clinical use of combined xenografts of bone and autologous red marrow. A preliminary report,” Journal of Bone and Joint Surgery B, vol. 60, no. 1, pp. 111–115, 1978. View at Scopus
  6. N. A. Sgaglione, D. P. Moynihan, and C. Uggen, “The use of allografts in high tibial osteotomy: opening wedge technique,” Operative Techniques in Sports Medicine, vol. 15, no. 2, pp. 72–80, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. O. Barbier, X. Bajard, A. Bouchard et al., “Osteochondral allograft reconstruction of segmental defect of humeral head after posterior dislocation of the shoulder,” European Journal of Orthopaedic Surgery and Traumatology, vol. 20, no. 7, pp. 581–585, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Woesz, “Rapid prototyping to produce porous scaffolds with controlled architecture for possible use in bone tissue engineering,” in Virtual Prototyping & Bio Manufacturing in Medical Applications, B. Bidanda and P. J. Bártolo, Eds., pp. 171–206, Springer, 2008.
  9. J. J. Marler, J. Upton, R. Langer, and J. P. Vacanti, “Transplantation of cells in matrices for tissue regeneration,” Advanced Drug Delivery Reviews, vol. 33, no. 1-2, pp. 165–182, 1998. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. S. Morsi, C. S. Wong, and S. S. Patel, “Conventional manufacturing processes for three-dimensional scaffolds,” in Virtual Prototyping & Bio Manufacturing in Medical Applications, B. Bidanda and P. J. Bártolo, Eds., pp. 129–148, Springer, 2008.
  11. P. J. Bártolo, H. A. Almeida, R. A. Rezende, T. Laoui, and B. Bidanda, “Advanced processes to fabricate scaffolds for tissue engineering,” in Virtual Prototyping & Bio Manufacturing in Medical Applications, B. Bidanda and P. J. Bártolo, Eds., pp. 149–170, Springer, 2008.
  12. R. Cortesini, “Stem cells, tissue engineering and organogenesis in transplantation,” Transplant Immunology, vol. 15, no. 2, pp. 81–89, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. C. Liu, Z. Xia, and J. T. Czernuszka, “Design and development of three-dimensional scaffolds for tissue engineering,” Chemical Engineering Research and Design, vol. 85, no. 7 A, pp. 1051–1064, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. G. Chen, T. Ushida, and T. Tateishi, “Scaffold design for tissue engineering,” Macromolecular Bioscience, vol. 2, no. 2, pp. 67–77, 2002.
  15. J. Zhao, X. Lu, K. Duan, L. Y. Guo, S. B. Zhou, and J. Weng, “Improving mechanical and biological properties of macroporous HA scaffolds through composite coatings,” Colloids and Surfaces B, vol. 74, no. 1, pp. 159–166, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. A. F. Aly, A. Agameia, A. S. Eldesouky, and M. A. Sharaf, “Bioceramic bone scaffolds for tissue engineering,” Journal of Applied Sciences Research, vol. 6, no. 11, pp. 1712–1721, 2010. View at Scopus
  17. J. R. Jones, L. M. Ehrenfried, and L. L. Hench, “Optimising bioactive glass scaffolds for bone tissue engineering,” Biomaterials, vol. 27, no. 7, pp. 964–973, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. H. D. A. Almeida and P. J. da Silva Bártolo, “Virtual topological optimisation of scaffolds for rapid prototyping,” Medical Engineering and Physics, vol. 32, no. 7, pp. 775–782, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Cahill, S. Lohfeld, and P. E. McHugh, “Finite element predictions compared to experimental results for the effective modulus of bone tissue engineering scaffolds fabricated by selective laser sintering,” Journal of Materials Science, vol. 20, no. 6, pp. 1255–1262, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. S. J. Hollister, R. D. Maddox, and J. M. Taboas, “Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints,” Biomaterials, vol. 23, no. 20, pp. 4095–4103, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Armillotta and R. Pelzer, “Modeling of porous structures for rapid prototyping of tissue engineering scaffolds,” International Journal of Advanced Manufacturing Technology, vol. 39, no. 5-6, pp. 501–511, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. C. K. Chua, K. F. Leong, C. M. Cheah, and S. W. Chua, “Development of a tissue engineering scaffold structure library for rapid prototyping. Part 1: Investigation and classification,” International Journal of Advanced Manufacturing Technology, vol. 21, no. 4, pp. 291–301, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. K. F. Leong, C. M. Cheah, and C. K. Chua, “Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs,” Biomaterials, vol. 24, no. 13, pp. 2363–2378, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Yang, K. F. Leong, Z. Du, and C. K. Chua, “The design of scaffolds for use in tissue engineering. Part I. Traditional factors,” Tissue Engineering, vol. 7, no. 6, pp. 679–689, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. W. Y. Yeong, C. K. Chua, K. F. Leong, and M. Chandrasekaran, “Rapid prototyping in tissue engineering: challenges and potential,” Trends in Biotechnology, vol. 22, no. 12, pp. 643–652, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. H. Lan, “Web-based rapid prototyping and manufacturing systems: a review,” Computers in Industry, vol. 60, no. 9, pp. 643–656, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. M. W. Naing, C. K. Chua, K. F. Leong, and Y. Wang, “Fabrication of customised scaffolds using computer-aided design and rapid prototyping techniques,” Rapid Prototyping Journal, vol. 11, no. 4, pp. 249–259, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. P. J. Bártolo, C. K. Chua, H. A. Almeida, S. M. Chou, and A. S. C. Lim, “Biomanufacturing for tissue engineering: present and future trends,” Virtual and Physical Prototyping, vol. 4, no. 4, pp. 203–216, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. S. J. Hollister, R. D. Maddox, and J. M. Taboas, “Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints,” Biomaterials, vol. 23, no. 20, pp. 4095–4103, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. C. K. Chua, K. F. Leong, C. M. Cheah, and S. W. Chua, “Development of a tissue engineering scaffold structure library for rapid prototyping. Part 2: Parametric library and assembly program,” International Journal of Advanced Manufacturing Technology, vol. 21, no. 4, pp. 302–312, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. Z. Fang, B. Starly, and W. Sun, “Computer-aided characterization for effective mechanical properties of porous tissue scaffolds,” CAD Computer Aided Design, vol. 37, no. 1, pp. 65–72, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. M. A. Wettergreen, B. S. Bucklen, M. A. K. Liebschner, and W. Sun, “CAD assembly process for bone replacement,” in Virtual Prototyping & Bio Manufacturing in Medical Applications, B. Bidanda and P. J. Bártolo, Eds., pp. 87–111, Springer, 2008.
  33. M. A. Wettergreen, B. S. Bucklen, W. Sun, and M. A. K. Liebschner, “Computer-aided tissue engineering of a human vertebral body,” Annals of Biomedical Engineering, vol. 33, no. 10, pp. 1333–1343, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. B. S. Bucklen, W. A. Wettergreen, E. Yuksel, and M. A. K. Liebschner, “Bone-derived CAD library for assembly of scaffolds in computer-aided tissue engineering,” Virtual and Physical Prototyping, vol. 3, no. 1, pp. 13–23, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. M. J. Wenninger, Polyhedron Models, Cambridge University Press, 1974.
  36. L. Mullen, R. C. Stamp, W. K. Brooks, E. Jones, and C. J. Sutcliffe, “Selective laser melting: a regular unit cell approach for the manufacture of porous, titanium, bone in-growth constructs, suitable for orthopedic applications,” Journal of Biomedical Materials Research B, vol. 89, no. 2, pp. 325–334, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. W. Y. Zhou, M. Wang, W. L. Cheung, and W. Y. Ip, “Selective laser sintering of poly(L-Lactide)/carbonated hydroxyapatite nanocomposite porous scaffolds for bone tissue engineering,” in Tissue Engineering, D. Eberli, Ed., pp. 179–204, InTech, Rijeka, Croatia, 2010.
  38. K. Arcaute, B. K. Mann, and R. B. Wicker, “Stereolithography of three-dimensional bioactive poly(ethylene glycol) constructs with encapsulated cells,” Annals of Biomedical Engineering, vol. 34, no. 9, pp. 1429–1441, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. K. Alvarez and H. Nakajima, “Metallic scaffolds for bone regeneration,” Materials, vol. 2, no. 3, pp. 790–832, 2009.
  40. S. L. Campanelli and N. Contuzzi, “Capabilities and performances of the selective laser melting process,” in New Trends in Technologies: Devices, Computer, Communication and Industrial Systems, M. J. Er, Ed., pp. 233–252, InTech, 2010.
  41. K. F. Leong, C. K. Chua, N. Sudarmadji, and W. Y. Yeong, “Engineering functionally graded tissue engineering scaffolds,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 1, no. 2, pp. 140–152, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. S. M. Mantila Roosa, J. M. Kemppainen, E. N. Moffitt, P. H. Krebsbach, and S. J. Hollister, “The pore size of polycaprolactone scaffolds has limited influence on bone regeneration in an in vivo model,” Journal of Biomedical Materials Research A, vol. 92, no. 1, pp. 359–368, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. S. H. Oh, I. K. Park, J. M. Kim, and J. H. Lee, “In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method,” Biomaterials, vol. 28, no. 9, pp. 1664–1671, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. S. Rooppakhun, N. Chantarapanich, B. Chernchujit, B. Mahaisavariya, S. Sucharitpwatskul, and K. Sitthiseripratip, “Mechanical evaluation of stainless steel and titanium dynamic hip screws for trochanteric fracture,” Proceedings of World Academy of Science, Engineering and Technology, vol. 70, pp. 662–665, 2010. View at Scopus
  45. J. T. M. Cheung, M. Zhang, A. K. L. Leung, and Y. B. Fan, “Three-dimensional finite element analysis of the foot during standing—a material sensitivity study,” Journal of Biomechanics, vol. 38, no. 5, pp. 1045–1054, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. N. Sudarmadji, J. Y. Tan, K. F. Leong, C. K. Chua, and Y. T. Loh, “Investigation of the mechanical properties and porosity relationships in selective laser-sintered polyhedral for functionally graded scaffolds,” Acta Biomaterialia, vol. 7, no. 2, pp. 530–537, 2011. View at Publisher · View at Google Scholar · View at Scopus