About this Journal Submit a Manuscript Table of Contents
Computational and Mathematical Methods in Medicine
Volume 2012 (2012), Article ID 469769, 9 pages
http://dx.doi.org/10.1155/2012/469769
Research Article

Predictive Models for Maximum Recommended Therapeutic Dose of Antiretroviral Drugs

1School of Pharmacy and Pharmacology, University of KwaZulu-Natal, Durban 4001, South Africa
2School of Medicine, University of Florida, Gainesville, FL 32601, USA

Received 11 September 2011; Revised 4 November 2011; Accepted 18 November 2011

Academic Editor: John Hotchkiss

Copyright © 2012 Michael Lee Branham et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. A. Pkowitz, “AIDS: the first 20 years,” New England Journal of Medicine, vol. 344, no. 23, pp. 1764–1772, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. P. Piot, M. Bartos, P. D. Ghys, and N. Walker, “The global impact of HIV/AIDS,” Nature, vol. 410, no. 6831, pp. 968–973, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. K. H. Mayer and K. K. Venkatesh, “Antiretroviral therapy as HIV prevention: status and prospects,” American Journal of Public Health, vol. 100, no. 10, pp. 1867–1876, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. E. de Clercq, “Anti-HIV drugs: 25 compounds approved within 25 years after the discovery of HIV,” International Journal of Antimicrobial Agents, vol. 33, no. 4, pp. 307–320, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. E. de Clercq, “Antiretroviral drugs,” Current Opinion in Pharmacology, vol. 10, no. 5, pp. 507–515, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. G. C. Williams and P. J. Sinko, “Oral absorption of the HIV protease inhibitors: a current update,” Advanced Drug Delivery Reviews, vol. 39, no. 1–3, pp. 211–238, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. E. Ojewole, I. Mackraj, P. Naidoo, and T. Govender, “Exploring the use of novel drug delivery systems for antiretroviral drugs,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 70, no. 3, pp. 697–710, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. C. Y. Wu and L. Z. Benet, “Predicting drug disposition via application of BCS: transport/absorption/ elimination interplay and development of a biopharmaceutics drug disposition classification system,” Pharmaceutical Research, vol. 22, no. 1, pp. 11–23, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. M. A. Cosenza, M. L. Zhao, and S. C. Lee, “HIV-1 expression protects macrophages and microglia from apoptotic death,” Neuropathology and Applied Neurobiology, vol. 30, no. 5, pp. 478–490, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. C. M. Bates, “HIV medicine: drug side effects and interactions,” Postgraduate Medical Journal, vol. 72, no. 843, pp. 30–36, 1996. View at Scopus
  11. D. D. Richman, D. M. Margolis, M. Delaney, W. C. Greene, D. Hazuda, and R. J. Pomerantz, “The challenge of finding a cure for HIV infection,” Science, vol. 323, no. 5919, pp. 1304–1307, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. C. Flexner, “HIV drug development: the next 25 years,” Nature Reviews Drug Discovery, vol. 6, no. 12, pp. 959–966, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. R. D. Benz, “Toxicological and clinical computational analysis and the US FDA/CDER,” Expert Opinion on Drug Metabolism and Toxicology, vol. 3, no. 1, pp. 109–124, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. P. Palumbo, H. Wu, E. Chadwick et al., “Virologic response to potent antiretroviral therapy and modeling of HIV dynamics in early pediatric infection,” Journal of Infectious Diseases, vol. 196, no. 1, pp. 23–29, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. D. Woolfson, M. L. Umrethia, V. L. Kett, and R. K. Malcolm, “Freeze-dried, mucoadhesive system for vaginal delivery of the HIV microbicide, dapivirine: optimisation by an ANN,” International Journal of Pharmaceutics, vol. 388, no. 1-2, pp. 136–143, 2010. View at Publisher · View at Google Scholar · View at PubMed
  16. N. Subramanian, A. Yajnik, and R. S. Murthy, “Artificial neural network as an alternative to multiple regression analysis in optimizing formulation parameters of cytarabine liposomes,” AAPS PharmSciTech, vol. 5, no. 1, p. E4, 2004. View at Scopus
  17. J. F. Contrera, E. J. Matthews, N. L. Kruhlak, and R. D. Benz, “Assessment of the health effects of chemicals in humans: I. QSAR estimation of the maximum recommended therapeutic dose (MRTD) and no effect level (NOEL) of organic chemicals based on clinical trial data,” Current Drug Discovery Technologies, vol. 1, no. 1, pp. 61–76, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Röling, H. Schmid, M. Fischereder, R. Draenert, and F. D. Goebel, “HIV-associated renal diseases and highly active antiretroviral therapy-induced nephropathy,” Clinical Infectious Diseases, vol. 42, no. 10, pp. 1488–1495, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. Y. Sun, Y. Peng, Y. Chen, and A. J. Shukla, “Application of artificial neural networks in the design of controlled release drug delivery systems,” Advanced Drug Delivery Reviews, vol. 55, no. 9, pp. 1201–1215, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. E. J. Matthews, N. L. Kruhlak, R. D. Benz, and J. F. Contrera, “Assessment of the health effects of chemicals in humans: I. QSAR estimation of the maximum recommended therapeutic dose (MRTD) and no effect level (NOEL) of organic chemicals based on clinical trial data,” Current Drug Discovery Technologies, vol. 1, no. 1, pp. 61–76, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. J. F. Blake, “Chemoinformatics—predicting the physicochemical properties of "drug-like" molecules,” Current Opinion in Biotechnology, vol. 11, no. 1, pp. 104–107, 2000. View at Publisher · View at Google Scholar · View at Scopus
  22. D. Butina, M. D. Segall, and K. Frankcombe, “Predicting ADME properties in silico: methods and models,” Drug Discovery Today, vol. 7, no. 11, pp. S83–S88, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Agatonovic-Kustrin and R. Beresford, “Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research,” Journal of Pharmaceutical and Biomedical Analysis, vol. 22, no. 5, pp. 717–727, 2000. View at Publisher · View at Google Scholar · View at Scopus
  24. I. Solomon, N. Maharshak, G. Chechik et al., “Applying an artificial neural network to warfarin maintenance dose prediction,” Israel Medical Association Journal, vol. 6, no. 12, pp. 732–735, 2004. View at Scopus
  25. B. W. Corrigan, P. R. Mayo, and F. Jamali, “Application of a neural network for gentamicin concentration prediction in a general hospital population,” Therapeutic Drug Monitoring, vol. 19, no. 1, pp. 25–28, 1997. View at Publisher · View at Google Scholar · View at Scopus
  26. C. W. Lim, S. Fujiwara, F. Yamashita, and M. Hashida, “Prediction of human skin permeability using a combination of molecular orbital calculations and artificial neural network,” Biological and Pharmaceutical Bulletin, vol. 25, no. 3, pp. 361–366, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Drăghici and R. B. Potter, “Predicting HIV drug resistance with neural networks,” Bioinformatics, vol. 19, no. 1, pp. 98–107, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. I. V. Tetko, “The WWW as a tool to obtain molecular parameters,” Mini Reviews in Medicinal Chemistry, vol. 3, no. 8, pp. 809–820, 2003. View at Scopus
  29. I. V. Tetko, V. Y. Tanchuk, and A. E. P. Villa, “Prediction of n-octanol/water partition coefficients from PHYSPROP database using artificial neural networks and E-state indices,” Journal of Chemical Information and Computer Sciences, vol. 41, no. 3–6, pp. 1407–1421, 2001. View at Scopus
  30. A. Arnot, W. Meylan, J. Tunkel et al., “A quantitative structure-activity relationship for predicting metabolic biotransformation rates for organic chemicals in fish,” Environmental Toxicology and Chemistry, vol. 28, no. 6, pp. 1168–1177, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. A. Arnot and F. A. P. C. Gobas, “A review of bioconcentration factor (BCF) and bioaccumulation factor (BAF) assessments for organic chemicals in fish,” Environmental Reviews, vol. 14, no. 4, pp. 257–297, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. C. Cobelli, E. R. Carson, L. Finkelstein, and M. S. Leaning, “Validation of simple and complex models in physiology and medicine,” The American Journal of Physiology, vol. 246, no. 2, pp. R259–266, 1984. View at Scopus
  33. R. Mannhold, G. I. Poda, C. Ostermann, and I. V. Tetko, “Calculation of molecular lipophilicity: state-of-the-art and comparison of logP methods on more than 96,000 compounds,” Journal of Pharmaceutical Sciences, vol. 98, no. 3, pp. 861–893, 2009. View at Publisher · View at Google Scholar · View at PubMed
  34. M. Yazdanian, S. L. Glynn, J. L. Wright, and A. Hawi, “Correlating partitioning and Caco-2 cell permeability of structurally diverse small molecular weight compounds,” Pharmaceutical Research, vol. 15, no. 9, pp. 1490–1494, 1998. View at Publisher · View at Google Scholar
  35. R. G. Jain, E. S. Furfine, L. Pedneault, A. J. White, and J. M. Lenhard, “Metabolic complications associated with antiretroviral therapy,” Antiviral Research, vol. 51, no. 3, pp. 151–177, 2001. View at Publisher · View at Google Scholar
  36. S. K. Gan, K. Samaras, A. Carr, and D. Chisholm, “Anti-retroviral therapy, insulin resistance and lipodystrophy,” Diabetes, Obesity and Metabolism, vol. 3, no. 2, pp. 67–71, 2001. View at Publisher · View at Google Scholar
  37. M. J. Glesby, “Toxicities and adverse findings associated with protease inhibitors,” in Protease Inhibitors in AIDS Therapy, R. C. Ogden and C. W. Flexner, Eds., pp. 237–256, Marcel Dekker, Inc., New York, NY, USA, 2001.
  38. P. A. Pham and C. Flexner, “Emerging antiretroviral drug interactions,” Journal of Antimicrobial Chemotherapy, vol. 66, no. 2, pp. 235–239, 2011. View at Publisher · View at Google Scholar · View at PubMed
  39. D. Wang, B. Larder, A. Revell et al., “A comparison of three computational modelling methods for the prediction of virological response to combination HIV therapy,” Artificial Intelligence in Medicine, vol. 47, no. 1, pp. 63–74, 2009. View at Publisher · View at Google Scholar · View at PubMed
  40. O. Krakovska and L. M. Wahl, “Optimal drug treatment regimens for HIV depend on adherence,” Journal of Theoretical Biology, vol. 246, no. 3, pp. 499–509, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at MathSciNet
  41. S. Hongzong, Y. Shuping, Z. Kejun, F. Aiping, D. Yun-Bo, and H. Zhide, “Quantitative structure activity relationship study on EC50 of anti-HIV drugs,” Chemometrics and Intelligent Laboratory Systems, vol. 90, no. 1, pp. 15–24, 2008. View at Publisher · View at Google Scholar
  42. B. Testa, P. Crivori, M. Reist, and P. A. Carrupt, “The influence of lipophilicity on the pharmacokinetic behavior of drugs: concepts and examples,” Perspectives in Drug Discovery and Design, vol. 19, pp. 179–211, 2000. View at Publisher · View at Google Scholar
  43. J. W. Nichols, M. Bonnell, S. D. Dimitrov, B. I. Escher, X. Han, and N. I. Kramer, “Bioaccumulation assessment using predictive approaches,” Integrated Environmental Assessment and Management, vol. 5, no. 4, pp. 577–597, 2009. View at Publisher · View at Google Scholar
  44. C. A. Lipinski, F. Lombardo, B. W. Dominy, and P. J. Feeney, “Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings,” Advanced Drug Delivery Reviews, vol. 23, no. 1–3, pp. 3–25, 1997. View at Publisher · View at Google Scholar
  45. W. B. Neely, D. R. Branson, and G. E. Blau, “Partition coefficient to measure bioconcentration potential of organic chemicals in fish,” Environmental Science and Technology, vol. 8, no. 13, pp. 1113–1115, 1974. View at Publisher · View at Google Scholar
  46. S. Dimitrov, T. Pavlov, D. Nedelcheva et al., “A kinetic model for predicting biodegradation,” SAR and QSAR in Environmental Research, vol. 18, no. 5-6, pp. 443–457, 2007. View at Publisher · View at Google Scholar · View at PubMed
  47. S. D. Dimitrov, N. C. Dimitrova, J. D. Walker, G. D. Veith, and O. G. Mekenyan, “Predicting BCFs of highly hydrophobic chemicals: effects of molecular size,” Pure and Applied Chemistry, vol. 74, no. 10, pp. 1823–1830, 2002.
  48. P. Howard, W. Meylan, D. Aronson et al., “A new biodegradation prediction model specific to petroleum hydrocarbons,” Environmental Toxicology and Chemistry, vol. 24, no. 8, pp. 1847–1860, 2005. View at Publisher · View at Google Scholar