About this Journal Submit a Manuscript Table of Contents
Computational and Mathematical Methods in Medicine
Volume 2012 (2012), Article ID 528781, 12 pages
http://dx.doi.org/10.1155/2012/528781
Research Article

An Automated Optimal Engagement and Attention Detection System Using Electrocardiogram

Department of Computer Science, School of Engineering, Virginia Commonwealth University, 401 West Main Street, P.O. Box 843019, Richmond, VA 23284-3019, USA

Received 1 May 2012; Accepted 18 June 2012

Academic Editor: Alberto Guillén

Copyright © 2012 Ashwin Belle et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Locke, An Essay Concerning Human Understanding, TE Zell, 1847.
  2. E. Horvitz and J. Apacible, “Learning and reasoning about interruption,” in Proceedings of the 5th International Conference on Multimodal Interfaces (ICMI '03), pp. 20–27, November 2003. View at Scopus
  3. D. S. McCrickard and C. M. Chewar, “Attuning notification design to user goals and attention costs,” Communications of the ACM, vol. 46, no. 3, pp. 67–72, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Roda, A. Angehrn, T. Nabeth, and L. Razmerita, “Using conversational agents to support the adoption of knowledge sharing practices,” Interacting with Computers, vol. 15, no. 1, pp. 57–89, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. B. P. Bailey, P. D. Adamczyk, T. Y. Chang, and N. A. Chilson, “A framework for specifying and monitoring user tasks,” Computers in Human Behavior, vol. 22, no. 4, pp. 709–732, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. S. K. L. Lal and A. Craig, “A critical review of the psychophysiology of driver fatigue,” Biological Psychology, vol. 55, no. 3, pp. 173–194, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. F. Mamashli, M. Ahmadlu, M. R. H. Golpayegani, and S. Gharibzadeh, “Detection of attention using chaotic global features,” Journal of Neuropsychiatry and Clinical Neurosciences, vol. 22, no. 2, article E20, 2010. View at Scopus
  8. S. K. L. Lal and A. Craig, “Driver fatigue: electroencephalography and psychological assessment,” Psychophysiology, vol. 39, no. 3, pp. 313–321, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. A. R. Clarke, R. J. Barry, R. McCarthy, and M. Selikowitz, “EEG analysis in attention-deficit/hyperactivity disorder: a comparative study of two subtypes,” Psychiatry Research, vol. 81, no. 1, pp. 19–29, 1998. View at Publisher · View at Google Scholar · View at Scopus
  10. J. F. Lubar, “Discourse on the development of EEG diagnostics and biofeedback for attention-deficit/hyperactivity disorders,” Biofeedback and Self-Regulation, vol. 16, no. 3, pp. 201–225, 1991. View at Publisher · View at Google Scholar · View at Scopus
  11. T. P. Tinius and K. A. Tinius, “Changes after EEG biofeedback and cognitive retraining in adults with mild traumatic brain injury and attention deficit hyperactivity disorder,” Journal of Neurotherapy, vol. 4, pp. 27–44, 2000.
  12. A. Al-Ahmad, M. Homer, and P. Wang, Accuracy and Utility of Multi-Sensor Armband ECG Signal Compared to Holder Monitoring, Arrhythmia Technologies Retreat, Chicago, Ill, USA, 2004.
  13. J. M. Stern and J. Engel, Atlas of EEG Patterns, Lippincott Williams & Wilkins, 2004.
  14. S. J. Orfanidis, Introduction to Signal Processing, Prentice-Hall, 1995.
  15. G. M. Friesen, T. C. Jannett, M. Afify Jadallah, S. L. Yates, S. R. Qu int, and H. Troy Nagle, “A comparison of the noise sensitivity of nine QRS detection algorithms,” IEEE Transactions on Biomedical Engineering, vol. 37, no. 1, pp. 85–98, 1990. View at Publisher · View at Google Scholar · View at Scopus
  16. J. B. Ochoa, Eeg Signal Classification for Brain Computer Interface Applications, Ecole Polytechnique Federale De Lausanne, 2002.
  17. M. R. Portnoff, “Time-frequency representation of digital signals and systems based on short-time Fourier analysis,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 28, no. 1, pp. 55–59, 1980. View at Scopus
  18. D. Gabor, “Theory of communication. Part 1: the analysis of information,” Electrical Engineers-Part III, vol. 93, pp. 429–441, 1946.
  19. P. Bloomfield, Fourier Analysis of Time Series: An Introduction, Wiley-Interscience, 2004.
  20. L. Cohen, “Time-frequency distributions—a review,” Proceedings of the IEEE, vol. 77, no. 7, pp. 941–981, 1989. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. Zhao, L. E. Atlas, and R. J. Marks, “Use of cone-shaped kernels for generalized time-frequency representations of nonstationary signals,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 38, no. 7, pp. 1084–1091, 1990. View at Publisher · View at Google Scholar · View at Scopus
  22. H. I. Choi and W. J. Williams, “Improved time-frequency representation of multicomponent signals using exponential kernels,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 37, no. 6, pp. 862–871, 1989. View at Publisher · View at Google Scholar · View at Scopus
  23. F. Hlawatsch and G. F. Boudreaux-Bartels, “Linear and quadratic time-frequency signal representations,” IEEE Signal Processing Magazine, vol. 9, no. 2, pp. 21–67, 1992. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Belle, R. Hobson, and K. Najarian, “A physiological signal processing system for optimal engagement and attention detection,” in Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW '11), pp. 555–561, 2011.
  25. A. Belle, S. Y. Ji, S. Ansari, R. Hakimzadeh, K. Ward, and K. Najarian, “Frustration detection with electrocardiograph signal using wavelet transform,” in Proceedings of the 1st International Conference on Biosciences (BioSciencesWorld '10), pp. 91–94, March 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. R. G. Stockwell, L. Mansinha, and R. P. Lowe, “Localization of the complex spectrum: the S transform,” IEEE Transactions on Signal Processing, vol. 44, no. 4, pp. 998–1001, 1996. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Babloyantz, J. M. Salazar, and C. Nicolis, “Evidence of chaotic dynamics of brain activity during the sleep cycle,” Physics Letters A, vol. 111, no. 3, pp. 152–156, 1985. View at Scopus
  28. K. Natarajan, U. R. Acharya, F. Alias, T. Tiboleng, and S. K. Puthusserypady, “Nonlinear analysis of EEG signals at different mental states,” BioMedical Engineering Online, vol. 3, article 7, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. E. Başar, C. Başar-Eroglu, S. Karakaş, and M. Schürmann, “Brain oscillations in perception and memory,” International Journal of Psychophysiology, vol. 35, no. 2-3, pp. 95–124, 2000. View at Publisher · View at Google Scholar · View at Scopus
  30. V. J. Samar, A. Bopardikar, R. Rao, and K. Swartz, “Wavelet analysis of neuroelectric waveforms: a conceptual tutorial,” Brain and Language, vol. 66, no. 1, pp. 7–60, 1999. View at Publisher · View at Google Scholar · View at Scopus
  31. E. A. Bartnik, K. J. Blinowska, and P. J. Durka, “Single evoked potential reconstruction by means of wavelet transform,” Biological Cybernetics, vol. 67, no. 2, pp. 175–181, 1992. View at Publisher · View at Google Scholar · View at Scopus
  32. O. Bertrand, J. Bohorquez, and J. Pernier, “Time-frequency digital filtering based on an invertible wavelet transform: an application to evoked potentials,” IEEE Transactions on Biomedical Engineering, vol. 41, no. 1, pp. 77–88, 1994. View at Publisher · View at Google Scholar · View at Scopus
  33. L. J. Trejo and M. J. Shensa, “Feature extraction of event-related potentials using wavelets: an application to human performance monitoring,” Brain and Language, vol. 66, no. 1, pp. 89–107, 1999. View at Publisher · View at Google Scholar · View at Scopus
  34. T. Kalayci, O. Ozdamar, and N. Erdol, “Use of wavelet transform as a preprocessor for the neural network detection of EEG spikes,” in Proceedings of the IEEE Creative Technology Transfer-A Global Affair (Southeastcon '94), pp. 1–3, April 1994. View at Scopus
  35. D. M. Tucker, “Spatial sampling of head electrical fields: the geodesic sensor net,” Electroencephalography and Clinical Neurophysiology, vol. 87, no. 3, pp. 154–163, 1993. View at Publisher · View at Google Scholar · View at Scopus
  36. S. J. Schiff, J. G. Milton, J. Heller, and S. L. Weinstein, “Wavelet transforms and surrogate data for electroencephalographic spike and seizure localization,” Optical Engineering, vol. 33, no. 7, pp. 2162–2169, 1994. View at Scopus
  37. J. Raz, L. Dickerson, and B. Turetsky, “A wavelet packet model of evoked potentials,” Brain and Language, vol. 66, no. 1, pp. 61–88, 1999. View at Publisher · View at Google Scholar · View at Scopus
  38. E. Frank, Y. Wang, S. Inglis, G. Holmes, and I. H. Witten, “Using model trees for classification,” Machine Learning, vol. 32, no. 1, pp. 63–76, 1998. View at Publisher · View at Google Scholar · View at Scopus
  39. J. R. Quinlan, C4. 5: Programs for Machine Learning, Morgan kaufmann, 1993.
  40. J. R. Quinlan, “Bagging, boosting, and C4.5,” in Proceedings of the 13th National Conference on Artificial Intelligence (AAAI '96), pp. 725–730, August 1996. View at Scopus
  41. J. R. Quinlan, “Induction of decision trees,” Machine Learning, vol. 1, no. 1, pp. 81–106, 1986. View at Publisher · View at Google Scholar · View at Scopus
  42. C. A. Frantzidis, C. Bratsas, M. A. Klados et al., “On the classification of emotional biosignals evoked while viewing affective pictures: an integrated data-mining-based approach for healthcare applications,” IEEE Transactions on Information Technology in Biomedicine, vol. 14, no. 2, pp. 309–318, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. C. D. Katsis, N. S. Katertsidis, and D. I. Fotiadis, “An integrated system based on physiological signals for the assessment of affective states in patients with anxiety disorders,” Biomedical Signal Processing and Control, vol. 6, no. 3, pp. 261–268, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5–32, 2001. View at Publisher · View at Google Scholar · View at Scopus
  45. A. Liaw and M. Wiener, “Classification and regression by random forest,” R News, vol. 2, pp. 18–22, 2002.
  46. J. Krajewski, S. Schnieder, D. Sommer, A. Batliner, and B. Schuller, “Applying multiple classifiers and non-linear dynamics features for detecting sleepiness from speech,” Neurocomputing, vol. 84, pp. 65–75, 2012. View at Scopus
  47. S. Y. Ji, R. Smith, T. Huynh, and K. Najarian, “A comparative analysis of multi-level computer-assisted decision making systems for traumatic injuries,” BMC Medical Informatics and Decision Making, vol. 9, no. 1, article 2, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. K. Najarian, “Learning-based complexity evaluation of radial basis function networks,” Neural Processing Letters, vol. 16, no. 2, pp. 137–150, 2002. View at Publisher · View at Google Scholar · View at Scopus
  49. K. Najarian, G. A. Dumont, M. S. Davies, and N. Heckman, “PAC learning in nonlinear FIR models,” International Journal of Adaptive Control and Signal Processing, vol. 15, pp. 37–52, 2001.
  50. K. Najarian, “A fixed-distribution PAC learning theory for neural FIR models,” Journal of Intelligent Information Systems, vol. 25, no. 3, pp. 275–291, 2005. View at Publisher · View at Google Scholar · View at Scopus