About this Journal Submit a Manuscript Table of Contents
Computational and Mathematical Methods in Medicine
Volume 2012 (2012), Article ID 648320, 7 pages
http://dx.doi.org/10.1155/2012/648320
Research Article

A Rate-Distortion-Based Merging Algorithm for Compressed Image Segmentation

1Department of Business Administration, Chung Hua University, Hsinchu City 30012, Taiwan
2Department of Computer Science and Information Engineering, National United University, Miaoli 36003, Taiwan
3Department of Electronics Engineering, Chung Hua University, Hsinchu City 30012, Taiwan
4Department of Mathematics, University of Salerno, Via Ponte Don Melillo, 84084 Fisciano, Italy

Received 6 August 2012; Accepted 5 September 2012

Academic Editor: Sheng-yong Chen

Copyright © 2012 Ying-Shen Juang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Xia, D. Feng, and R. Zhao, “Adaptive segmentation of textured images by using the coupled Markov random field Model,” IEEE Transactions on Image Processing, vol. 15, no. 11, pp. 3559–3566, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Y. Yang, J. Wright, Y. Ma, and S. Shankar Sastry, “Unsupervised segmentation of natural images via lossy data compression,” Computer Vision and Image Understanding, vol. 110, no. 2, pp. 212–225, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. N. A. M. Isa, S. A. Salamah, and U. K. Ngah, “Adaptive fuzzy moving K-means clustering algorithm for image segmentation,” IEEE Transactions on Consumer Electronics, vol. 55, no. 4, pp. 2145–2153, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Xiang, C. Pan, F. Nie, and C. Zhang, “Turbopixel segmentation using eigen-images,” IEEE Transactions on Image Processing, vol. 19, no. 11, pp. 3024–3034, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Li and W. Zhao, “Quantitatively investigating locally weak stationarity of modified multifractional gaussian noise,” Physica A, vol. 391, no. 24, pp. 6268–6278, 2012. View at Publisher · View at Google Scholar
  6. M. Li and W. Zhao, “Variance bound of ACF estimation of one block of fGn with LRD,” Mathematical Problems in Engineering, vol. 2010, Article ID 560429, 14 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Chen and X. Li, “Functional magnetic resonance imaging for imaging neural activity in the human brain: the annual progress,” Computational and Mathematical Methods in Medicine, vol. 2012, Article ID 613465, 9 pages, 2012. View at Publisher · View at Google Scholar
  8. Z. Teng, J. He, A. J. Degnan et al., “Critical mechanical conditions around neovessels in carotid atherosclerotic plaque may promote intraplaque hemorrhage,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 223, no. 2, pp. 321–326, 2012.
  9. S. Y. Chen and Q. Guan, “Parametric shape representation by a deformable NURBS model for cardiac functional measurements,” IEEE Transactions on Biomedical Engineering, vol. 58, no. 3, pp. 480–487, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. D. E. Ilea and P. F. Whelan, “CTex—an adaptive unsupervised segmentation algorithm based on color-texture coherence,” IEEE Transactions on Image Processing, vol. 17, no. 10, pp. 1926–1939, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Mallat, A Wavelet Tour of Signal Processing, Academic Press, San Diego, Calif, USA, 1999.
  12. M. K. Bashar, N. Ohnishi, and K. Agusa, “A new texture representation approach based on local feature saliency,” Pattern Recognition and Image Analysis, vol. 17, no. 1, pp. 11–24, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. C. M. Pun and M. C. Lee, “Extraction of shift invariant wavelet features for classification of images with different sizes,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26, no. 9, pp. 1228–1233, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. C. R. Jung, “Unsupervised multiscale segmentation of color images,” Pattern Recognition Letters, vol. 28, no. 4, pp. 523–533, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. T. Acharya and P. S. Tsai, JPEG2000 Standard for Image Compression: Concepts, Algorithms and VLSI Architectures, John Wiley & Sons, New York, NY, USA, 2005.
  16. C. Cattani, “Harmonic wavelet approximation of random, fractal and high frequency signals,” Telecommunication Systems, vol. 43, no. 3-4, pp. 207–217, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Y. Chen and Z. J. Wang, “Acceleration strategies in generalized belief propagation,” IEEE Transactions on Industrial Informatics, vol. 8, no. 1, pp. 41–48, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. F. Zargari, A. Mosleh, and M. Ghanbari, “A fast and efficient compressed domain JPEG2000 image retrieval method,” IEEE Transactions on Consumer Electronics, vol. 54, no. 4, pp. 1886–1893, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. M. H. Pi, C. S. Tong, S. K. Choy, and H. Zhang, “A fast and effective model for wavelet subband histograms and its application in texture image retrieval,” IEEE Transactions on Image Processing, vol. 15, no. 10, pp. 3078–3088, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. H. C. Hsin, “Texture segmentation in the joint photographic expert group 2000 domain,” IET Image Processing, vol. 5, no. 6, pp. 554–559, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. http://www.eecs.berkeley.edu/~yang/software/lossy_segmentation/.
  22. D. Comaniciu and P. Meer, “Mean shift: a robust approach toward feature space analysis,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 5, pp. 603–619, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. H. C. Hsin, T.-Y. Sung, Y.-S. Shieh, and C. Cattani, “MQ Coder based image feature and segmentation in the compressed domain,” Mathematical Problems in Engineering, vol. 2012, Article ID 490840, 14 pages, 2012. View at Publisher · View at Google Scholar
  24. S. Chen, M. Zhao, G. Wu, C. Yao, and J. Zhang, “Recent advances in morphological cell image analysis,” Computational and Mathematical Methods in Medicine, vol. 2012, Article ID 101536, 10 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. R. Unnikrishnan, C. Pantofaru, and M. Hebert, “Toward objective evaluation of image segmentation algorithms,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29, no. 6, pp. 929–944, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. H. C. Hsin and T. Y. Sung, “Context-based rate distortion estimation and its application to wavelet image coding,” WSEAS Transactions on Information Science and Applications, vol. 6, no. 6, pp. 988–993, 2009. View at Scopus
  27. H.-C. Hsin and T.-Y. Sung, “Image segmentation in the JPEG2000 domain,” in Proceedings of the International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR '11), pp. 24–28, 2011.
  28. H.-C. Hsin, T.-Y. Sung, Y.-S. Shieh, and C. Cattani, “Adaptive binary arithmetic coder-based image feature and segmentation in the compressed domain,” Mathematical Problems in Engineering, vol. 2012, Article ID 490840, 14 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus