Research Article

Atomic Radiations in the Decay of Medical Radioisotopes: A Physics Perspective

Table 1

Calculated Auger electron yields for selected medical radioisotopes.

RADAR [10, 11]DDEP [12]Eckerman and Endo [13]Howell [14]Stepanek [15]Pomplun [16]Present study

Nuclear decay data(a)ENSDFDDEPENSDFENSDFENSDFICRP38ENSDF
Conversion coefficients[17][8, 18][18, 19][18][15][17, 20, 21][8]
Electron capture ratios[22][23][24][22, 25][22, 25][22][23]
Atomic shellsK, LK, LK–OK–OK–NK–NK–R
Atomic transition rates(b)[7, 26][2729][30, 31][3235] (A)[30][3234] (A)[30]
RADLSTEMISSIONEDISTR04[27, 36] (X)[37, 38] (X)
Atomic transition energies(c)NAB [39]SE [40]NAB [30] + 1(A)DFDF [41]DF [42]
NAB (X)
Vacancy propagation(d)DETDETDET++MCMCMCMC
Charge neutralizationNoNoNoYesNoNoNo

Auger electron yield per nuclear decay

Tc (6.007 h)0.1220.134.3634.02.53.37
111In (2.805 d)1.1361.167.21514.76.055.75
123I (13.22 h)1.0641.0813.7114.96.4
125I (59.4 d)1.771.7823.024.915.3
201Tl (3.04 d)0.7730.61420.936.9

ENSDF: evaluated nuclear structure file [43]; DDEP: decay data evaluation project [12]; ICRP38: international commission on radiological protection [44].
Computer codes: RADLST by Burrows [26], EMISSION by Schönfeld and Janßen [45], and EDISTR04 by Endo et al. [46]; (A): Auger electrons, (X): X-rays.
Transition energies deduced from: NAB: neutral atom binding energies; SE: semiempirical Auger energies Z/Z + 1 approximated from neutral atom binding energies [47]; DF: relativistic Dirac-Fock calculations.
Approach to treat vacancy cascades: DET: deterministic, using closed formulae; DET++: deterministic, using up to 3000 possible transitions; MC: Monte Carlo approach.