About this Journal Submit a Manuscript Table of Contents
Computational and Mathematical Methods in Medicine
Volume 2012 (2012), Article ID 748302, 14 pages
http://dx.doi.org/10.1155/2012/748302
Research Article

Spongiosa Primary Development: A Biochemical Hypothesis by Turing Patterns Formations

1Grupo de Investigación en Estudios y Aplicaciones de Ingeniería Mecánica (GEAMEC), Universidad Santo Tomás, Bogotá, Colombia
2Grupo de Modelado y Métodos Numéricos en Ingeniería (GNUM), Departamento de Ingeniería Mecánica y Mecatrónica, Facultad de Ingeniería, Universidad Nacional de Colombia, Bogotá, Colombia

Received 2 April 2012; Revised 24 May 2012; Accepted 5 June 2012

Academic Editor: Jérôme Noailly

Copyright © 2012 Oscar Rodrigo López-Vaca and Diego Alexander Garzón-Alvarado. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. R. Carter and G. S. Beaupré, Skeletal Function and form Mechanobioloy of Skeletal Development, Aging and Regeneration, Cambridge University Press, New York, NY, USA, 2001.
  2. F. Shapiro, “Developmental bone biology,” in Pediatric Orthopedic Deformities, p. 953, Academic Press, 2002.
  3. D. Shier, Hole’s Human Anatomy & Physiology, McGraw-Hill, 2001.
  4. W. E. Roberts and J. K. Hartsfield, “Bone development and function: genetic and environmental mechanisms,” Seminars in Orthodontics, vol. 10, no. 2, pp. 100–122, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. K. Pelttari, E. Steck, and W. Richter, “The use of mesenchymal stem cells for chondrogenesis,” Injury, vol. 39, supplement 1, pp. S58–S65, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. N. Ortega, D. J. Behonick, and Z. Werb, “Matrix remodeling during endochondral ossification,” Trends in Cell Biology, vol. 14, no. 2, pp. 86–93, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. D. A. Garzón-Alvarado, L. M. P. Cortés, and R. P. C. Sandoval, “A mathematical model of epiphyseal development: hypothesis on the cartilage canals growth,” Computer Methods in Biomechanics and Biomedical Engineering, vol. 13, no. 6, pp. 765–772, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. D. A. Garzón-Alvarado, J. M. García-Aznar, and M. Doblaré, “A reaction-diffusion model for long bones growth,” Biomechanics and Modeling in Mechanobiology, vol. 8, no. 5, pp. 381–395, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. D. A. Garzón-Alvarado, J. M. García-Aznar, and M. Doblaré, “Appearance and location of secondary ossification centres may be explained by a reaction-diffusion mechanism,” Computers in Biology and Medicine, vol. 39, no. 6, pp. 554–561, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. E. J. Mackie, Y. A. Ahmed, L. Tatarczuch, K. S. Chen, and M. Mirams, “Endochondral ossification: how cartilage is converted into bone in the developing skeleton,” International Journal of Biochemistry and Cell Biology, vol. 40, no. 1, pp. 46–62, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Provot and E. Schipani, “Molecular mechanisms of endochondral bone development,” Biochemical and Biophysical Research Communications, vol. 328, no. 3, pp. 658–665, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. M. B. Goldring, K. Tsuchimochi, and K. Ijiri, “The control of chondrogenesis,” Journal of Cellular Biochemistry, vol. 97, no. 1, pp. 33–44, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. D. A. Garzón-Alvarado, J. M. García-Aznar, and M. Doblare, “The early bone epiphysis formation: a numerical simulation,” Journal of Biomechanics, vol. 39, pp. S642–S642, 2006.
  14. J. E. M. Brouwers, C. C. van Donkelaar, B. G. Sengers, and R. Huiskes, “Can the growth factors PTHrP, Ihh and VEGF, together regulate the development of a long bone?” Journal of Biomechanics, vol. 39, no. 15, pp. 2774–2782, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. U. Kornak and S. Mundlos, “Genetic disorders of the skeleton: a developmental approach,” American Journal of Human Genetics, vol. 73, no. 3, pp. 447–474, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. R. Pogue, E. Sebald, L. King, E. Kronstadt, D. Krakow, and D. H. Cohn, “A transcriptional profile of human fetal cartilage,” Matrix Biology, vol. 23, no. 5, pp. 299–307, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. C. A. Francomano, I. McIntosh, and D. J. Wilkin, “Bone dysplasias in man: molecular insights,” Current Opinion in Genetics and Development, vol. 6, no. 3, pp. 301–308, 1996. View at Publisher · View at Google Scholar · View at Scopus
  18. B. Courtin, A. M. Perault-Staub, and J. F. Staub, “A reaction-diffusion model for trabecular architecture of embryonic periosteal long bone,” Complexity International, vol. 4, pp. 1–17, 1997. View at Scopus
  19. M. J. F. Blumer, S. Longato, and H. Fritsch, “Structure, formation and role of cartilage canals in the developing bone,” Annals of Anatomy, vol. 190, no. 4, pp. 305–315, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. L. M. Peinado Cortés, J. C. Vanegas Acosta, and D. A. Garzón Alvarado, “A mechanobiological model of epiphysis structures formation,” Journal of Theoretical Biology, vol. 287, no. 12, pp. 13–25, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. C. C. Van Donkelaar and R. Huiskes, “The PTHrP-Ihh feedback loop in the embryonic growth plate allows PTHrP to control hypertrophy and Ihh to regulate proliferation,” Biomechanics and Modeling in Mechanobiology, vol. 6, no. 1-2, pp. 55–62, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. D. A. Garzón-Alvarado, M. A. Velasco, and C. A. Narváez-Tovar, “Self-assembled scaffolds using reactiondiffusion systems: a hypothesis for bone regeneration,” Journal of Mechanics in Medicine and Biology, vol. 11, no. 1, pp. 231–272, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. O. Nilsson, R. Marino, F. De Luca, M. Phillip, and J. Baron, “Endocrine regulation of the growth plate,” Hormone Research, vol. 64, no. 4, pp. 157–165, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. E. B. Hunziker, J. Wagner, and J. Zapf, “Differential effects of insulin-like growth factor I and growth hormone on developmental stages of rat growth plate chondrocytes in vivo,” Journal of Clinical Investigation, vol. 93, no. 3, pp. 1078–1086, 1994. View at Scopus
  25. R. Randhawa and P. Cohen, “The role of the insulin-like growth factor system in prenatal growth,” Molecular Genetics and Metabolism, vol. 86, no. 1-2, pp. 84–90, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. W. Schlegel, D. Halbauer, A. Raimann et al., “IGF expression patterns and regulation in growth plate chondrocytes,” Molecular and Cellular Endocrinology, vol. 327, no. 1-2, pp. 65–71, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. K. Huch, S. Kleffner, J. Stöve, W. Puhl, K. P. Günther, and R. E. Brenner, “PTHrP, PTHr, and FGFR3 are involved in the process of endochondral ossification in human osteophytes,” Histochemistry and Cell Biology, vol. 119, no. 4, pp. 281–287, 2003. View at Scopus
  28. G. V. Segre and K. Lee, “Endochondral bone formation regulation by parathyroid hormone-related peptide, Indian hedgehog, and parathyroid hormone,” in The Parathyroids: Basic and Clinical Concepts, pp. 245–260, Academic Press, San Diego, Calif, USA, 2001.
  29. D. A. Stevens and G. R. Williams, “Hormone regulation of chondrocyte differentiation and endochondral bone formation,” Molecular and Cellular Endocrinology, vol. 151, no. 1-2, pp. 195–204, 1999. View at Publisher · View at Google Scholar · View at Scopus
  30. P. De Biase and R. Capanna, “Bone morphogenetic proteins and growth factors: emerging role in regenerative orthopaedic surgery,” Journal of Orthopaedics and Traumatology, vol. 8, no. 1, pp. 43–48, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. M. F. Carlevaro, S. Cermelli, R. Cancedda, and F. D. Cancedda, “Vascular endothelial growth factor (VEGF) in cartilage neovascularization and chondrocyte differentiation: auto-paracrine role during endochondral bone formation,” Journal of Cell Science, vol. 113, no. 1, pp. 59–69, 2000. View at Scopus
  32. B. C. J. Van Der Eerden, M. Karperien, and J. M. Wit, “Systemic and local regulation of the growth plate,” Endocrine Reviews, vol. 24, no. 6, pp. 782–801, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. X. Yang and G. Karsenty, “Transcription factors in bone: developmental and pathological aspects,” Trends in Molecular Medicine, vol. 8, no. 7, pp. 340–345, 2002. View at Publisher · View at Google Scholar · View at Scopus
  34. Z. L. Deng, K. A. Sharff, N. Tang et al., “Regulation of osteogenic differentiation during skeletal development,” Frontiers in Bioscience, vol. 13, no. 6, pp. 2001–2021, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. V. Lefebvre and P. Smits, “Transcriptional control of chondrocyte fate and differentiation,” Birth Defects Research Part C, vol. 75, no. 3, pp. 200–212, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. L. Troeberg and H. Nagase, “Proteases involved in cartilage matrix degradation in osteoarthritis,” Biochimica et Biophysica Acta, vol. 1824, no. 1, pp. 133–145, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. S. M. Krane and M. Inada, “Matrix metalloproteinases and bone,” Bone, vol. 43, no. 1, pp. 7–18, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. G. Murphy and H. Nagase, “Progress in matrix metalloproteinase research,” Molecular Aspects of Medicine, vol. 29, no. 5, pp. 290–308, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. T. E. Cawston and A. J. Wilson, “Understanding the role of tissue degrading enzymes and their inhibitors in development and disease,” Best Practice and Research: Clinical Rheumatology, vol. 20, no. 5, pp. 983–1002, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. E. H. Filvaroff, “VEGF and bone,” Journal of Musculoskeletal Neuronal Interactions, vol. 3, no. 4, pp. 304–307, 2003. View at Scopus
  41. M. Murata, K. Yudoh, and K. Masuko, “The potential role of vascular endothelial growth factor (VEGF) in cartilage. How the angiogenic factor could be involved in the pathogenesis of osteoarthritis?” Osteoarthritis and Cartilage, vol. 16, no. 3, pp. 279–286, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. C. Maes and G. Carmeliet, “Vascular and nonvascular roles of VEGF in bone development,” in VEGF in Development, pp. 79–90, Springer, Austin, Tex, USA, 2008.
  43. M. O. Hiltunen, M. Ruuskanen, J. Huuskonen et al., “Adenovirus-mediated VEGF-A gene transfer induces bone formation in vivo.,” The FASEB Journal, vol. 17, no. 9, pp. 1147–1149, 2003. View at Scopus
  44. R. Ruimerman, P. Hilbers, B. Van Rietbergen, and R. Huiskes, “A theoretical framework for strain-related trabecular bone maintenance and adaptation,” Journal of Biomechanics, vol. 38, no. 4, pp. 931–941, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. M. J. Olszta, X. Cheng, S. S. Jee et al., “Bone structure and formation: a new perspective,” Materials Science and Engineering R, vol. 58, no. 3–5, pp. 77–116, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. D. A. Garzán-Alvarado and A. M. Ramírez Martinez, “A biochemical hypothesis on the formation of fingerprints using a turing patterns approach,” Theoretical Biology and Medical Modelling, vol. 8, no. 1, article 24, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. E. J. Cramping and P. K. Maini, “Reaction-diffusion models for biological pattern formation,” Methods and Applications of Analysis, vol. 8, no. 2, pp. 415–428, 2001.
  48. A. Gierer and H. Meinhardt, “A theory of biological pattern formation,” Kybernetik, vol. 12, no. 1, pp. 30–39, 1972. View at Publisher · View at Google Scholar · View at Scopus
  49. P. K. Maini, “Mathematical models in morphogenesis,” in Mathematics Inspired by Biology, pp. 151–189, Springer, Berlin, Germany, 1999.
  50. P. K. Maini, K. J. Painter, and H. N. P. Chau, “Spatial pattern formation in chemical and biological systems,” Journal of the Chemical Society, vol. 93, no. 20, pp. 3601–3610, 1997. View at Scopus
  51. J. D. Murray, “Pattern formation in integrative biology a marriage of theory and experiment,” Comptes Rendus de l'Academie des Sciences, vol. 323, no. 1, pp. 5–14, 2000. View at Scopus
  52. I. G. Jang and I. Y. Kim, “Computational simulation of trabecular adaptation progress in human proximal femur during growth,” Journal of Biomechanics, vol. 42, no. 5, pp. 573–580, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. G. A. P. Renders, L. Mulder, G. E. J. Langenbach, L. J. van Ruijven, and T. M. G. J. van Eijden, “Biomechanical effect of mineral heterogeneity in trabecular bone,” Journal of Biomechanics, vol. 41, no. 13, pp. 2793–2798, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. P. G. Coelho, P. R. Fernandes, H. C. Rodrigues, J. B. Cardoso, and J. M. Guedes, “Numerical modeling of bone tissue adaptation-A hierarchical approach for bone apparent density and trabecular structure,” Journal of Biomechanics, vol. 42, no. 7, pp. 830–837, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. R. T. Ballock and R. J. O'Keefe, “Current concepts review: the biology of the growth plate,” Journal of Bone and Joint Surgery, vol. 85, no. 4, pp. 715–726, 2003. View at Scopus
  56. D. R. Carter, M. C. H. Van Der Meulen, and G. S. Beaupré, “Mechanical factors in bone growth and development,” Bone, vol. 18, supplement 1, pp. 5S–10S, 1996. View at Scopus
  57. B. De Crombrugghe, V. Lefebvre, R. R. Behringer, W. Bi, S. Murakami, and W. Huang, “Transcriptional mechanisms of chondrocyte differentiation,” Matrix Biology, vol. 19, no. 5, pp. 389–394, 2000. View at Publisher · View at Google Scholar · View at Scopus
  58. B. De Crombrugghe, V. Lefebvre, and K. Nakashima, “Regulatory mechanisms in the pathways of cartilage and bone formation,” Current Opinion in Cell Biology, vol. 13, no. 6, pp. 721–727, 2001. View at Publisher · View at Google Scholar · View at Scopus
  59. T. Pufe, V. Harde, W. Petersen, M. B. Goldring, B. Tillmann, and R. Mentlein, “Vascular endothelial growth factor (VEGF) induces matrix metalloproteinase expression in immortalized chondrocytes,” Journal of Pathology, vol. 202, no. 3, pp. 367–374, 2004. View at Publisher · View at Google Scholar · View at Scopus
  60. A. M. Turing, “The chemical basis of morphogenesis,” Philosophical Transactions of the Royal Society B, vol. 237, no. 641, pp. 37–72, 1952. View at Publisher · View at Google Scholar
  61. A. Madzvamuse, P. K. Maini, and A. J. Wathen, “A moving grid finite element method for the simulation of pattern generation by turing models on growing domains,” Journal of Scientific Computing, vol. 24, no. 2, pp. 247–262, 2005. View at Publisher · View at Google Scholar · View at Scopus