About this Journal Submit a Manuscript Table of Contents
Computational and Mathematical Methods in Medicine
Volume 2012 (2012), Article ID 761901, 11 pages
http://dx.doi.org/10.1155/2012/761901
Research Article

Diabetic Retinopathy Grading by Digital Curvelet Transform

1Biomedical Engineering Department, Medical Image & Signal Processing Research Center, Isfahan University of Medical Sciences, Isfahan 81745319, Iran
2Ophthalmology Department, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran

Received 24 May 2012; Accepted 30 July 2012

Academic Editor: Jacek Waniewski

Copyright © 2012 Shirin Hajeb Mohammad Alipour et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. Cheung, P. Mitchell, and T. Y. Wong, “Diabetic retinopathy,” The Lancet, vol. 376, no. 9735, pp. 124–136, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. Q. Mohamed, M. C. Gillies, and T. Y. Wong, “Management of diabetic retinopathy: a systematic review,” Journal of the American Medical Association, vol. 298, no. 8, pp. 902–916, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Niemeijer, M. D. Abràmoff, and B. Van Ginneken, “Segmentation of the optic disc, macula and vascular arch in fundus photographs,” IEEE Transactions on Medical Imaging, vol. 26, no. 1, pp. 116–127, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Li and O. Chutatape, “Automated feature extraction in color retinal images by a model based approach,” IEEE Transactions on Biomedical Engineering, vol. 51, no. 2, pp. 246–254, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. American Academy of Ophthalmology Retina Panel, “Preferred practice pattern guidelines. Diabetic retinopathy,” American Academy of Ophthalmology San Francisco, Calif, USA, http://www.aao.org/ppp.
  6. M. H. Ahmad Fadzil, H. Nugroho, L. I. Izhar, and H. A. Nugroho, “Analysis of retinal fundus images for grading of diabetic retinopathy severity,” Medical and Biological Engineering and Computing, vol. 49, no. 6, pp. 693–700, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. H. F. Jelinek, M. J. Cree, J. J. G. Leandro, J. V. B. Soares, R. M. Cesar, and A. Luckie, “Automated segmentation of retinal blood vessels and identification of proliferative diabetic retinopathy,” Journal of the Optical Society of America A, vol. 24, no. 5, pp. 1448–1456, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. P. Kahai, K. R. Namuduri, and H. Thompson, “A decision support framework for automated screening of diabetic retinopathy,” International Journal of Biomedical Imaging, vol. 2006, Article ID 45806, 8 pages, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Nayak, P. S. Bhat, R. Acharya U, C. M. Lim, and M. Kagathi, “Automated identification of diabetic retinopathy stages using digital fundus images,” Journal of Medical Systems, vol. 32, no. 2, pp. 107–115, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Sopharak, B. Uyyanonvara, S. Barman, and T. H. Williamson, “Automatic detection of diabetic retinopathy exudates from non-dilated retinal images using mathematical morphology methods,” Computerized Medical Imaging and Graphics, vol. 32, no. 8, pp. 720–727, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Walter, J. C. Klein, P. Massin, and A. Erginay, “A contribution of image processing to the diagnosis of diabetic retinopathy detection of exudates in color fundus images of the human retina,” IEEE Transactions on Medical Imaging, vol. 21, no. 10, pp. 1236–1243, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. W. L. Yun, U. Rajendra Acharya, Y. V. Venkatesh, C. Chee, L. C. Min, and E. Y. K. Ng, “Identification of different stages of diabetic retinopathy using retinal optical images,” Information Sciences, vol. 178, no. 1, pp. 106–121, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. D. Vallabha, R. Dorairaj, K. Namuduri, and H. Thompson, “Automated detection and classification of vascular abnormalities in diabetic retinopathy,” in Proceedings of 13th IEEE Signals, Systems and Computers, vol. 2, pp. 1625–1629, November 2004. View at Scopus
  14. R. Priya and P. Aruna, “Review of automated diagnosis of diabetic retinopathy using the support vector machine,” International Journal of Applied Engineering Research, vol. 1, pp. 844–863, 2011.
  15. S. H. Hajeb, H. Rabbani, and M. R. Akhlaghi, “A new combined method based on curvelet transform and morphological operators for automatic detection of foveal avascular zone,” Signal, Image & Video Processing (Springer). In press.
  16. E. Candès, L. Demanet, D. Donoho, and L. Ying, “Fast discrete curvelet transforms,” Multiscale Modeling and Simulation, vol. 5, no. 3, pp. 861–899, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. J. L. Starck, F. Murtagh, E. J. Candès, and D. L. Donoho, “Gray and color image contrast enhancement by the curvelet transform,” IEEE Transactions on Image Processing, vol. 12, no. 6, pp. 706–717, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Esmaeili, H. Rabbani, A. M. Dehnavi, and A. Dehghani, “Automatic optic disk detection by the use of curvelet transform,” in Proceedings of the 9th International Conference on Information Technology and Applications in Biomedicine, ITAB 2009, pp. 1–4, November 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Esmaeili, H. Rabbani, A. Mehri, and A. Dehghani, “Extraction of retinal blood vessels by curvelet transform,” in Proceedings of the IEEE International Conference on Image Processing (ICIP '09), pp. 3353–3356, November 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. E. D. Pisano, S. Zong, B. M. Hemminger et al., “Contrast limited adaptive histogram equalization image processing to improve the detection of simulated spiculations in dense mammograms,” Journal of Digital Imaging, vol. 11, no. 4, pp. 193–200, 1998. View at Scopus
  21. V. Vapnik, Statistical Learning Theory, Springer, 1998.
  22. S. H. Hajeb, H. Rabbani, M. R. Akhlaghi, S. H. Haghjoo, and A. R. Mehri, “Analysis of foveal avascular zone for grading of diabetic retinopathy severity 8 based on curvelet transform,” Graefe's Archive for Clinical and Experimental Ophthalmology. In press.
  23. V. Vapnik, S. Golowich, and A. Smola, “Support vector method for function approximation, regression estimation, and signal processing,” in Advances in Neural Information Processing Systems, M. Mozer, M. Jordan, and T. Petsche, Eds., vol. 9, pp. 281–287, MIT Press, Cambridge, Mass, USA, 1997.
  24. A. Osareh, M. Mirmehdi, B. Thomas, and R. Markham, “Comparative exudate classification using support vector machines and neural networks,” in Proceedings of the 5th International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 413–420, September 2002.
  25. F. Z. Berrichi and M. Benyettou, Automated Diagnosis of Retinal Images Using the Support Vector Machine (SVM), Faculte des Science, Department of Informatique, USTO, Oran, Algerie.
  26. M. N. Do and M. Vetterli, “The contourlet transform: an efficient directional multiresolution image representation,” IEEE Transactions on Image Processing, vol. 14, no. 12, pp. 2091–2106, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. I. W. Selesnick, R. G. Baraniuk, and N. G. Kingsbury, “The dual-tree complex wavelet transform,” IEEE Signal Processing Magazine, vol. 22, no. 6, pp. 123–151, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. E. P. Simoncelli, W. T. Freeman, E. H. Adelson, and D. J. Heeger, “Shiftable multiscale transforms,” IEEE Transactions on Information Theory, vol. 38, no. 2, pp. 587–607, 1992. View at Publisher · View at Google Scholar · View at Scopus
  29. W. Q. Lim, “The discrete shearlet transform: a new directional transform and compactly supported shearlet frames,” IEEE Transactions on Image Processing, vol. 19, no. 5, pp. 1166–1180, 2010. View at Publisher · View at Google Scholar · View at Scopus