About this Journal Submit a Manuscript Table of Contents
Computational and Mathematical Methods in Medicine
Volume 2012 (2012), Article ID 847686, 11 pages
http://dx.doi.org/10.1155/2012/847686
Research Article

Detecting Epileptic Seizure from Scalp EEG Using Lyapunov Spectrum

1Biomedical Engineering Department, nternational University of Vietnam National Universities, Ho Chi Minh City, Vietnam
2Faculty of Applied Science, University of Technology of Vietnam National Universities, Ho Chi Minh City, Vietnam

Received 30 September 2011; Accepted 28 November 2011

Academic Editor: Carlo Cattani

Copyright © 2012 Truong Quang Dang Khoa et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Sanei and J. A. Chambers, EEG Signal Processing, John Wiley & Son, New York, NY, USA, 2007.
  2. J. Gotman and L. Y. Wang, “State-dependent spike detection: concepts and preliminary results,” Electroencephalography and Clinical Neurophysiology, vol. 79, no. 1, pp. 11–19, 1991. View at Scopus
  3. A. A. Dingle, R. D. Jones, G. J. Carroll, and W. R. Fright, “A multistage system to detect epileptiform activity in the EEG,” IEEE Transactions on Biomedical Engineering, vol. 40, no. 12, pp. 1260–1268, 1993. View at Publisher · View at Google Scholar · View at PubMed
  4. J. R. Glover Jr., P. Y. Ktonas, N. Raghavan, J. M. Urunuela, S. S. Velamuri, and E. L. Reilly, “A multichannel signal processor for the detection of epileptogenic sharp transients in the EEG,” IEEE Transactions on Biomedical Engineering, vol. 33, no. 12, pp. 1121–1128, 1986. View at Scopus
  5. J. R. Glover Jr., N. Raghavan, P. Y. Ktonas, and J. D. Frost, “Context-based automated detection of epileptogenic sharp transients in the EEG: elimination of false positives,” IEEE Transactions on Biomedical Engineering, vol. 36, no. 5, pp. 519–527, 1989. View at Scopus
  6. W. R. S. Webber, B. Litt, K. Wilson, and R. P. Lesser, “Practical detection of epileptiform discharges (EDs) in the EEG using an artificial neural network: a comparison of raw and parameterized EEG data,” Electroencephalography and Clinical Neurophysiology, vol. 91, no. 3, pp. 194–204, 1994. View at Publisher · View at Google Scholar · View at Scopus
  7. C. Kurth, F. Gllliam, and B. J. Steinhoff, “EEG spike detection with a Kohonen feature map,” Annals of Biomedical Engineering, vol. 28, no. 11, pp. 1362–1369, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Zhu and D. Jiang, “A linear epileptic seizure predictor based on slow waves of scalp EEGs,” in Proceedings of the 27th Annual International Conference of the Engineering in Medicine and Biology Society (IEEE-EMBS '05), pp. 7277–7280, September 2005. View at Scopus
  9. Z. Nenadic and J. W. Burdick, “Spike detection using the continuous wavelet transform,” IEEE Transactions on Biomedical Engineering, vol. 52, no. 1, pp. 74–87, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. D. E. Lerner, “Monitoring changing dynamics with correlation integrals: case study of an epileptic seizure,” Physica D, vol. 97, no. 4, pp. 563–576, 1996. View at Scopus
  11. M. Le Van Quyen, J. Martinerie, M. Baulac, and F. Varela, “Anticipating epileptic seizures in real time by a non-linear analysis of similarity between EEG recordings,” NeuroReport, vol. 10, no. 10, pp. 2149–2155, 1999. View at Scopus
  12. M. Le Van Quyen, C. Adam, J. Martinerie, M. Baulac, S. Clémenceau, and F. Varela, “Spatio-temporal characterizations of non-linear changes in intracranial activities prior to human temporal lobe seizures,” European Journal of Neuroscience, vol. 12, no. 6, pp. 2124–2134, 2000. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Le Van Quyen, J. Martinerie, V. Navarro et al., “Anticipation of epileptic seizures from standard EEG recordings,” The Lancet, vol. 357, no. 9251, pp. 183–188, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. K. K. Jerger, S. L. Weinstein, T. Sauer, and S. J. Schiff, “Multivariate linear discrimination of seizures,” Clinical Neurophysiology, vol. 116, no. 3, pp. 545–551, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. C. C. Jouny, P. J. Franaszczuk, and G. K. Bergey, “Signal complexity and synchrony of epileptic seizures: is there an identifiable preictal period?” Clinical Neurophysiology, vol. 116, no. 3, pp. 552–558, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. R. Esteller, J. Echauz, M. D'Alessandro et al., “Continuous energy variation during the seizure cycle: towards an on-line accumulated energy,” Clinical Neurophysiology, vol. 116, no. 3, pp. 517–526, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. M. A. F. Harrison, M. G. Frei, and I. Osorio, “Accumulated energy revisited,” Clinical Neurophysiology, vol. 116, no. 3, pp. 527–531, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. L. D. Iasemidis, H. P. Zaveri, J. C. Sackellares, and W. J. Williams, “Linear and nonlinear modeling of ecog in temporal lobe epilepsy,” in Proceedings of the 5th Annual Rocky ountains Bioengineering Symposium, pp. 187–193, 1988.
  19. L. D. Iasemidis and J. C. Sackellares, “The temporal evolution of the largest lyapunov exponent on the human epileptic cortex,” in Measuring Chaos in the Human Brain, D. W. Duke and W. S. Pritchard , Eds., World Scientific, Singapore, 1991.
  20. L. D. Iasemidis, J. C. Principle, and J. C. Sackellares, “Measurement and quantification of spatiotemporal dynamics of human epileptic seizures,” in Nonlinear Biomedical Signal Processing, M. Akay, Ed., pp. 296–318, IEEE Press, New York, NY, USA, 2000.
  21. L. M. Hively, V. A. Protopopescu, and P. C. Gailey, “Timely detection of dynamical change in scalp EEG signals,” Chaos, vol. 10, no. 4, pp. 864–875, 2000. View at Scopus
  22. L. M. Hively and V. A. Protopopescu, “Channel-consistent forewarning of epileptic events from scalp EEG,” IEEE Transactions on Bio-Medical Engineering, vol. 50, no. 5, pp. 584–593, 2003. View at Scopus
  23. L. D. Iasemidis, J. C. Principe, J. M. Czaplewski, R. L. Gilmore, S. N. Roper, and J. C. Sackellares, “Spatiotemporal transition to epileptic seizures: a nonlinear dynamical analysis of scalp and intracranial eeg recordings,” in Spatiotemporal Models in Biological and Artificial Systems, F. Silva, J. C. Principe, and L. B. Almeida, Eds., pp. 81–88, IOS Press, Amsterdam, The Netherlands, 1997.
  24. M. Ungureanu, C. Bigan, R. Strungaru, and V. Lazarescu, “Independent component analysis applied in biomedical signal processing,” Measurement Science Review, vol. 4, section 2, 2004.
  25. A. Hyvärinen and E. Oja, Independent Component Analysis: Algorithms and Applications, Neural Networks Research Centre, 2000.
  26. J. C. Sackellares, L. D. Iasemidis, D. S. Shiau, R. L. Gilmore, and S. N. Roper, “Detection of the preictal transition from scalp eeg recordings,” Epilepsia, vol. 40, supplement 7, p. 176, 1999.
  27. A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano, “Determining Lyapunov exponents from a time series,” Physica D, vol. 16, no. 3, pp. 285–317, 1985. View at Scopus
  28. J. P. Eckmann, S. O. Kamphorst, D. Ruelle, and S. Ciliberto, “Liapunov exponents from time series,” Physical Review A, vol. 34, no. 6, pp. 4971–4979, 1986. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  29. R. Brown, P. Bryant, and H. D. I. Abarbanel, “Computing the Lyapunov spectrum of a dynamical system from an observed time series,” Physical Review A, vol. 43, no. 6, pp. 2787–2806, 1991. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  30. M. T. Rosenstein, J. J. Collins, and C. J. De Luca, “A practical method for calculating largest Lyapunov exponents from small data sets,” Physica D, vol. 65, no. 1-2, pp. 117–134, 1993.
  31. S. Sato, M. Sano, and Y. Sawada, “Practical methods of measuring the generalized dimension and the largest Lyapunov exponent in high dimensional chaotic systems,” Progress of Theoretical Physics, vol. 77, no. 1, pp. 1–5, 1987.
  32. M. Sano and Y. Sawada, “Measurement of the lyapunov spectrum from a chaotic time series,” Physical Review Letters, vol. 55, no. 10, pp. 1082–1085, 1985. View at Publisher · View at Google Scholar · View at MathSciNet
  33. P. M. Pardalos, V. A. Yatsenko, A. Messo, A. Chinchuluun, and P. Xanthopoulos, “An optimization approach for finding a spectrum of Lyapunov exponents,” Computational Neuroscience, vol. 38, part 3, pp. 285–303, 2010.