About this Journal Submit a Manuscript Table of Contents
Computational and Mathematical Methods in Medicine
Volume 2013 (2013), Article ID 148363, 11 pages
http://dx.doi.org/10.1155/2013/148363
Research Article

Classification of Pulmonary Nodules by Using Hybrid Features

1Department of Engineering Sciences, Istanbul University, 34320 Avcılar, Istanbul, Turkey
2Department of Electrical and Electronics Engineering, Istanbul University, 34320 Avcılar, Istanbul, Turkey

Received 28 March 2013; Revised 24 May 2013; Accepted 29 May 2013

Academic Editor: Chung-Ming Chen

Copyright © 2013 Ahmet Tartar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Doi, “Computer-aided diagnosis in medical imaging: historical review, current status and future potential,” Computerized Medical Imaging and Graphics, vol. 31, no. 4-5, pp. 198–211, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. M. L. Giger, H.-P. Chan, and J. Boone, “Anniversary paper: history and status of CAD and quantitative image analysis: the role of Medical Physics and AAPM,” Medical Physics, vol. 35, no. 12, pp. 5799–5820, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. R. M. Summers, “Road maps for advancement of radiologic computer-aided detection in the 21st century,” Radiology, vol. 229, no. 1, pp. 11–13, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. “Cancer facts and figs,” The American Cancer Society, 2009.
  5. A. Jemal, R. Siegel, E. Ward, Y. Hao, J. Xu, and M. J. Thun, “Cancer statistics, 2009,” CA Cancer Journal for Clinicians, vol. 59, no. 4, pp. 225–249, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Kanazawa, Y. Kawata, N. Niki et al., “Computer-aided diagnosis for pulmonary nodules based on helical CT images,” Computerized Medical Imaging and Graphics, vol. 22, no. 2, pp. 157–167, 1998. View at Publisher · View at Google Scholar · View at Scopus
  7. U. Baĝci, M. Bray, J. Caban, J. Yao, and D. J. Mollura, “Computer-assisted detection of infectious lung diseases: a review,” Computerized Medical Imaging and Graphics, vol. 36, no. 1, pp. 72–84, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Murphy, B. van Ginneken, A. M. R. Schilham, B. J. de Hoop, H. A. Gietema, and M. Prokop, “A large-scale evaluation of automatic pulmonary nodule detection in chest CT using local image features and k-nearest-neighbour classification,” Medical Image Analysis, vol. 13, no. 5, pp. 757–770, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Iwano, T. Nakamura, Y. Kamioka, and T. Ishigaki, “Computer-aided diagnosis: a shape classification of pulmonary nodules imaged by high-resolution CT,” Computerized Medical Imaging and Graphics, vol. 29, no. 7, pp. 565–570, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Iwano, T. Nakamura, Y. Kamioka, M. Ikeda, and T. Ishigaki, “Computer-aided differentiation of malignant from benign solitary pulmonary nodules imaged by high-resolution CT,” Computerized Medical Imaging and Graphics, vol. 32, no. 5, pp. 416–422, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Chen, J. Zhang, Y. Xu, B. Chen, and K. Zhang, “Performance comparison of artificial neural network and logistic regression model for differentiating lung nodules on CT scans,” Expert Systems with Applications, vol. 39, pp. 11503–11509, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Kubota, A. K. Jerebko, M. Dewan, M. Salganicoff, and A. Krishnan, “Segmentation of pulmonary nodules of various densities with morphological approaches and convexity models,” Medical Image Analysis, vol. 15, no. 1, pp. 133–154, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. D.-T. Lin, C.-R. Yan, and W.-T. Chen, “Autonomous detection of pulmonary nodules on CT images with a neural network-based fuzzy system,” Computerized Medical Imaging and Graphics, vol. 29, no. 6, pp. 447–458, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Retico, P. Delogu, M. E. Fantacci, I. Gori, and A. Preite Martinez, “Lung nodule detection in low-dose and thin-slice computed tomography,” Computers in Biology and Medicine, vol. 38, no. 4, pp. 525–534, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. T. Messay, R. C. Hardie, and S. K. Rogers, “A new computationally efficient CAD system for pulmonary nodule detection in CT imagery,” Medical Image Analysis, vol. 14, no. 3, pp. 390–406, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. R. C. Hardie, S. K. Rogers, T. Wilson, and A. Rogers, “Performance analysis of a new computer aided detection system for identifying lung nodules on chest radiographs,” Medical Image Analysis, vol. 12, no. 3, pp. 240–258, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. J. J. Suárez-Cuenca, P. G. Tahoces, M. Souto et al., “Application of the iris filter for automatic detection of pulmonary nodules on computed tomography images,” Computers in Biology and Medicine, vol. 39, no. 10, pp. 921–933, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Hanamiya, T. Aoki, Y. Yamashita, S. Kawanami, and Y. Korogi, “Frequency and significance of pulmonary nodules on thin-section CT in patients with extrapulmonary malignant neoplasms,” European Journal of Radiology, vol. 81, no. 1, pp. 152–157, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. M. C. Lee, L. Boroczky, K. Sungur-Stasik et al., “Computer-aided diagnosis of pulmonary nodules using a two-step approach for feature selection and classifier ensemble construction,” Artificial Intelligence in Medicine, vol. 50, no. 1, pp. 43–53, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. W.-J. Choi and T.-S. Choi, “Genetic programming-based feature transform and classification for the automatic detection of pulmonary nodules on computed tomography images,” Information Sciences, vol. 212, pp. 57–78, 2012.
  21. Q. Wang, W. Kang, C. Wu, and B. Wang, “Computer-aided detection of lung nodules by SVM based on 3D matrix patterns,” Clinical Imaging, vol. 37, no. 1, pp. 62–69, 2013. View at Publisher · View at Google Scholar
  22. S. L. A. Lee, A. Z. Kouzani, and E. J. Hu, “Random forest based lung nodule classification aided by clustering,” Computerized Medical Imaging and Graphics, vol. 34, no. 7, pp. 535–542, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Bosch, A. Zisserman, and X. Muñoz, “Image classification using random forests and ferns,” in Proceedings of the IEEE 11th International Conference on Computer Vision (ICCV '07), Rio de Janeiro, Brazil, October 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. E. Bauer and R. Kohavi, “An empirical comparison of voting classification algorithms: bagging, boosting, and variants,” Machine Learning, vol. 36, no. 1-2, pp. 105–139, 1999. View at Scopus
  25. R. Maclin and D. Opitz, “Empirical evaluation of bagging and boosting,” in Proceedings of the 14th National Conference on Artificial Intelligence (AAAI '97), pp. 546–551, July 1997. View at Scopus
  26. T.-K. An and M.-H. Kim, “A new diverse AdaBoost classifier,” in Proceedings of the International Conference on Artificial Intelligence and Computational Intelligence (AICI '10), pp. 359–363, Sanya, China, October 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. Z. Zhang and X. Xie, “Research on AdaBoost.M1 with random forest,” in Proceedings of the 2nd International Conference on Computer Engineering and Technology (ICCET '10), vol. 1, pp. 647–652, Chengdu, China, April 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. A. K. Jain, R. P. W. Duin, and J. Mao, “Statistical pattern recognition: a review,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 1, pp. 4–37, 2000. View at Publisher · View at Google Scholar · View at Scopus
  29. L. J. Hargrove, G. Li, K. B. Englehart, and B. S. Hudgins, “Principal components analysis preprocessing for improved classification accuracies in pattern-recognition-based myoelectric control,” IEEE Transactions on Biomedical Engineering, vol. 56, no. 5, pp. 1407–1414, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. H. Kong, L. Wang, E. K. Teoh, X. Li, J.-G. Wang, and R. Venkateswarlu, “Generalized 2D principal component analysis for face image representation and recognition,” Neural Networks, vol. 18, no. 5-6, pp. 585–594, 2005. View at Publisher · View at Google Scholar
  31. R. Gonzales and R. Woods, Image Processing, Prentice Hall, New York, NY, USA, 2007.
  32. R. Opfer and R. Wiemker, “Performance analysis for computer-aided lung nodule detection on LIDC data,” in Medical Imaging 2007: Image Perception, Observer Performance, and Technology Assessment, vol. 6515 of Proceedings of the SPIE, San Diego, Calif, USA, 2007. View at Publisher · View at Google Scholar
  33. G. D. Rubin, J. K. Lyo, D. S. Paik et al., “Pulmonary nodules on multi-detector row CT scans: performance comparison of radiologists and computer-aided detection,” Radiology, vol. 234, no. 1, pp. 274–283, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. B. Sahiner, L. M. Hadjiiski, H.-P. Chan et al., “Effect of CAD on radiologists' detection of lung nodules on thoracic CT scans: observer performance study,” in Medical Imaging 2007: Image Perception, Observer Performance, and Technology Assessment, vol. 6515 of Proceedings of SPIE, San Diego, Calif, USA, 2007. View at Publisher · View at Google Scholar
  35. K. Suzuki, S. G. Armato III, F. Li, S. Sone, and K. Doi, “Massive training artificial neural network (MTANN) for reduction of false positives in computerized detection of lung nodules in low-dose computed tomography,” Medical Physics, vol. 30, no. 7, pp. 1602–1617, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. A. Tartar, N. Kılıç, and A. Akan, “Bagging support vector machine approaches for pulmonary nodule detection,” in Proceedings of the International Conference on Control, Decision and Information Technologies, Tunisia, May 2013.
  37. C. Solomon and T. Breckon, Fundamentals of Digital Image Processing: A Practical Approach With Examples in Matlab, Wiley-Blackwell, 2011.
  38. H. Peng, F. Long, and C. Ding, “Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, no. 8, pp. 1226–1238, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. L. Lancashire, S. Ugurel, C. Creaser, D. Schadendorf, R. Rees, and G. Ball, “Utilizing artificial neural networks to elucidate serum biomarker patterns which discriminate between clinical stages in melanoma,” in Proceedings of the IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB '05), La Jolla, Calif, USA, November 2005. View at Scopus
  40. H. I. Erdal, O. Karakurt, and E. Namli, “High performance concrete compressive strength forecasting using ensemble models based on discrete wavelet transform,” Engineering Applications of Artificial Intelligence, vol. 26, no. 4, pp. 1246–1254, 2013. View at Publisher · View at Google Scholar
  41. I. Mukherjee and S. Routroy, “Comparing the performance of neural networks developed by using Levenberg-Marquardt and Quasi-Newton with the gradient descent algorithm for modelling a multiple response grinding process,” Expert Systems with Applications, vol. 39, no. 3, pp. 2397–2407, 2012. View at Publisher · View at Google Scholar · View at Scopus
  42. L. Breiman, “Random forests,” Tech. Rep., Statistics Department, University of California, Berkeley, Calif, USA, 1999.
  43. L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5–32, 2001. View at Publisher · View at Google Scholar · View at Scopus
  44. L. Breiman, “Bagging predictors,” Machine Learning, vol. 24, no. 2, pp. 123–140, 1996. View at Scopus
  45. D. Opitz and R. Maclin, “Popular ensemble methods: an empirical study,” Journal of Artificial Intelligence Research, vol. 11, pp. 169–198, 1999. View at Scopus
  46. H. Fan and H. Wang, “Preditcing protein subcellular location by AdaBoost.M1 algorithm,” in Proceedings of the 2nd International Conference on Artificial Intelligence, Management Science and Electronic Commerce (AIMSEC '11), pp. 3168–3171, Deng Leng, China, August 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. Y. Freund and R. E. Schapire, “Experiments with a new boosting algorithm,” in Proceedings of the 13th Conference on Machine Learning, pp. 148–156, 1996.
  48. Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-line learning and an application to boosting,” Journal of Computer and System Sciences, vol. 55, no. 1, pp. 119–139, 1997. View at Scopus
  49. B. Li, K. Chen, L. Tian, Y. Yeboah, and S. Ou, “Detection of pulmonary nodules in CT images based on fuzzy integrated active contour model and hybrid parametric mixture model,” Computational and Mathematical Methods in Medicine, vol. 2013, Article ID 515386, 15 pages, 2013. View at Publisher · View at Google Scholar
  50. T. Fawett, “ROC graphs: notes and practical considerations for data mining researches,” Tech. Rep. HPL-2003-4, HP Labs, 2003.
  51. J. Shiraishi, Q. Li, K. Suzuki, R. Engelmann, and K. Doi, “Computer-aided diagnostic scheme for the detection of lung nodules on chest radiographs: localized search method based on anatomical classification,” Medical Physics, vol. 33, no. 7, pp. 2642–2653, 2006. View at Publisher · View at Google Scholar · View at Scopus