About this Journal Submit a Manuscript Table of Contents
Computational and Mathematical Methods in Medicine
Volume 2013 (2013), Article ID 149608, 12 pages
http://dx.doi.org/10.1155/2013/149608
Research Article

Spatiotemporal Quantification of Local Drug Delivery Using MRI

1Center for Interventional Biomaterials, School of Biological and Health Systems Engineering, Arizona State University, P.O. Box 879709, Tempe, AZ 85287, USA
2Banner Good Samaritan Medical Center, 901 E Willetta Street, 2nd Floor, Phoenix, AZ 85006, USA
3Image Processing Application Laboratory, School of Biological and Health Systems Engineering, Arizona State University, P.O. Box 879709, Tempe, AZ 85287, USA

Received 20 December 2012; Revised 25 March 2013; Accepted 26 March 2013

Academic Editor: Wenxiang Cong

Copyright © 2013 Morgan B. Giers et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. B. Wolinsky, Y. L. Colson, and M. W. Grinstaff, “Local drug delivery strategies for cancer treatment: gels, nanoparticles, polymeric films, rods, and wafers,” Journal of Controlled Release, vol. 159, no. 1, pp. 14–26, 2012. View at Publisher · View at Google Scholar
  2. F. Coluzzi and C. Mattia, “OROS hydromorphone in chronic pain management: when drug delivery technology matches clinical needs,” Minerva Anestesiologica, vol. 76, no. 12, pp. 1072–1084, 2010. View at Scopus
  3. R. J. Hurlbert, N. Theodore, J. B. Drabier, A. M. Magwood, and V. K. H. Sonntag, “A prospective randomized double-blind controlled trial to evaluate the efficacy of an analgesic epidural paste following lumbar decompressive surgery,” Journal of Neurosurgery, vol. 90, no. 4, pp. 191–197, 1999. View at Scopus
  4. K. Ladewig, “Drug delivery in soft tissue engineering,” Expert Opinion on Drug Delivery, vol. 8, no. 9, pp. 1175–1188, 2011. View at Publisher · View at Google Scholar
  5. M. J. Dunbar, “Antibiotic bone cements: their use in routine primary total joint arthroplasty is justified,” Orthopedics, vol. 32, no. 9, p. 660, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. H. W. Buchholz, R. A. Elson, E. Engelbrecht, H. Lodenkämper, J. Röttger, and A. Siegel, “Management of deep infection of total hip replacement,” Journal of Bone and Joint Surgery. British, vol. 63, no. 3, pp. 342–353, 1981.
  7. R. O. Darouiche, “Treatment of infections associated with surgical implants,” The New England Journal of Medicine, vol. 350, no. 14, pp. 1422–1429, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Kurtz, K. Ong, E. Lau, F. Mowat, and M. Halpern, “Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030,” Journal of Bone and Joint Surgery. American, vol. 89, no. 4, pp. 780–785, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. P. S. Stewart and J. W. Costerton, “Antibiotic resistance of bacteria in biofilms,” The Lancet, vol. 358, no. 9276, pp. 135–138, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Ceri, M. E. Olson, C. Stremick, R. R. Read, D. Morck, and A. Buret, “The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms,” Journal of Clinical Microbiology, vol. 37, no. 6, pp. 1771–1776, 1999. View at Scopus
  11. M. Diefenbeck, T. Mückley, and G. O. Hofmann, “Prophylaxis and treatment of implant-related infections by local application of antibiotics,” Injury, vol. 37, no. 2, pp. S95–S104, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Klekamp, J. M. Dawson, D. W. Haas, D. DeBoer, and M. Christie, “The use of vancomycin and tobramycin in acrylic bone cement: biomechanical effects and elution kinetics for use in joint arthroplasty,” Journal of Arthroplasty, vol. 14, no. 3, pp. 339–346, 1999. View at Publisher · View at Google Scholar · View at Scopus
  13. A. C. McLaren, M. Nugent, K. Economopoulos, H. Kaul, B. L. Vernon, and R. McLemore, “Hand-mixed and premixed antibiotic-loaded bone cement have similar homogeneity,” Clinical Orthopaedics and Related Research, vol. 467, no. 7, pp. 1693–1698, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. M. W. Nijhof, W. J. A. Dhert, P. B. J. Tilman, A. J. Verbout, and A. Fleer, “Release of tobramycin from tobramycin-containing bone cement in bone and serum of rabbits,” Journal of Materials Science: Materials in Medicine, vol. 8, no. 12, pp. 799–802, 1997. View at Publisher · View at Google Scholar · View at Scopus
  15. G. J. Sterling, S. Crawford, J. H. Potter, G. Koerbin, and R. Crawford, “The pharmacokinetics of Simplex-tobramycin bone cement,” Journal of Bone and Joint Surgery. British, vol. 85, no. 5, pp. 646–649, 2003. View at Scopus
  16. K. Adams, L. Couch, G. Cierny, J. Calhoun, and J. T. Mader, “In vitro and in vivo evaluation of antibiotic diffusion from antibiotic- impregnated polymethylmethacrylate beads,” Clinical Orthopaedics and Related Research, no. 278, pp. 244–252, 1992. View at Scopus
  17. G. Cierny III and D. DiPasquale, “Periprosthetic total joint infections: staging, treatment, and outcomes,” Clinical Orthopaedics and Related Research, no. 403, pp. 23–28, 2002. View at Scopus
  18. R. Raghavan, M. L. Brady, M. I. Rodríguez-Ponce, A. Hartlep, C. Pedain, and J. H. Sampson, “Convection-enhanced delivery of therapeutics for brain disease, and its optimization,” Neurosurgical Focus, vol. 20, no. 4, pp. 1–13, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. J. H. Sampson, R. Raghavan, M. L. Brady et al., “Clinical utility of a patient-specific algorithm for simulating intracerebral drug infusions,” Neuro-Oncology, vol. 9, no. 3, pp. 343–353, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. M. T. Krauze, J. Forsayeth, J. W. Park, and K. S. Bankiewicz, “Successful and safe perfusion of the primate brainstem: in vivo magnetic resonance imaging of macromolecular distribution during infusion,” Pharmaceutical Research, vol. 23, no. 11, pp. 2493–2504, 2006. View at Publisher · View at Google Scholar
  21. R. E. Port, C. Schuster, C. R. Port, and P. Bachert, “Simultaneous sustained release of fludarabine monophosphate and Gd-DTPA from an interstitial liposome depot in rats: potential for indirect monitoring of drug release by magnetic resonance imaging,” Cancer Chemotherapy and Pharmacology, vol. 58, no. 5, pp. 607–617, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. T. Fritz-Hansen, E. Rostrup, H. B. W. Larsson, L. Søndergaard, P. Ring, and O. Henriksen, “Measurement of the arterial concentration of Gd-DTPA using MRI: a step toward quantitative perfusion imaging,” Magnetic Resonance in Medicine, vol. 36, no. 2, pp. 225–231, 1996. View at Scopus
  23. K. M. Donahue, D. Burstein, W. J. Manning, and M. L. Gray, “Studies of Gd-DTPA relaxivity and proton exchange rates in tissue,” Magnetic Resonance in Medicine, vol. 32, no. 1, pp. 66–76, 1994. View at Publisher · View at Google Scholar · View at Scopus
  24. J. L. Fleckenstein, R. C. Canby, R. W. Parkey, and R. M. Peshock, “Acute effects of exercise on MR imaging of skeletal muscle in normal volunteers,” American Journal of Roentgenology, vol. 151, no. 2, pp. 231–237, 1988. View at Scopus
  25. S. Noordin, C. S. Winalski, S. Shortkroff, and R. V. Mulkern, “Factors affecting paramagnetic contrast enhancement in synovial fluid: effects of electrolytes, protein concentrations, and temperature on water proton relaxivities from Mn ions and Gd chelated contrast agents,” Osteoarthritis and Cartilage, vol. 18, no. 7, pp. 964–970, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. A. M. Prantner, V. Sharma, J. R. Garbow, and D. Piwnica-Worms, “Synthesis and characterization of a Gd-DOTA-D-permeation peptide for magnetic resonance relaxation enhancement of intracellular targets,” Molecular Imaging, vol. 2, no. 4, pp. 333–341, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Rohrer, H. Bauer, J. Mintorovitch, M. Requardt, and H. J. Weinmann, “Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths,” Investigative Radiology, vol. 40, no. 11, pp. 715–724, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. G. J. Stanisz and R. M. Henkelman, “Gd-DTPA relaxivity depends on macromolecular content,” Magnetic Resonance in Medicine, vol. 44, pp. 665–667, 2000.
  29. G. Strich, P. L. Hagan, K. H. Gerber, and R. A. Stutsky, “Tissue distribution and magnetic resonance spin lattice relaxation effects of gadolinium-DTPA,” Radiology, vol. 154, no. 3, pp. 723–726, 1985. View at Scopus
  30. K. N. Magdoom, G. L. Pishko, J. H. Kim, and M. Sarntinoranont, “Evaluation of a voxelized model based on DCE-MRI for tracer transport in tumor,” Journal of Biomechanical Engineering, vol. 134, no. 9, Article ID 091004, 9 pages, 2012. View at Publisher · View at Google Scholar
  31. X. Chen, G. W. Astary, H. Sepulveda, T. H. Mareci, and M. Sarntinoranont, “Quantitative assessment of macromolecular concentration during direct infusion into an agarose hydrogel phantom using contrast-enhanced MRI,” Magnetic Resonance Imaging, vol. 26, no. 10, pp. 1433–1441, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. H. Kim, M. R. Robinson, M. J. Lizak et al., “Controlled drug release from an ocular implant: an evaluation using dynamic three-dimensional magnetic resonance imaging,” Investigative Ophthalmology and Visual Science, vol. 45, no. 8, pp. 2722–2731, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. F. Xu, H. Han, H. Zhang, J. Pi, and Y. Fu, “Quantification of Gd-DTPA concentration in neuroimaging using T1 3D MP-RAGE sequence at 3.0 T,” Magnetic Resonance Imaging, vol. 29, no. 6, pp. 827–834, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. K. Hittmair, G. Gomiscek, K. Langenberger, M. Recht, H. Imhof, and J. Kramer, “Method for the quantitative assessment of contrast agent uptake in dynamic contrast-enhanced MRI,” Magnetic Resonance in Medicine, vol. 31, no. 5, pp. 567–571, 1994. View at Scopus
  35. L. Bokacheva, H. Rusinek, Q. Chen et al., “Quantitative determination of Gd-DTPA concentration in T 1-weighted MR renography studies,” Magnetic Resonance in Medicine, vol. 57, no. 6, pp. 1012–1018, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. J. Mørkenborg, M. Pedersen, F. T. Jensen, H. Stødkilde-Jørgensen, J. C. Djurhuus, and J. Frøkiær, “Quantitative assessment of Gd-DTPA contrast agent from signal enhancement: an in-vitro study,” Magnetic Resonance Imaging, vol. 21, no. 6, pp. 637–643, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. B. D. Foy and J. Blake, “Diffusion of paramagnetically labeled proteins in cartilage: enhancement of the 1-D NMR imaging technique,” Journal of Magnetic Resonance, vol. 148, no. 1, pp. 126–134, 2001. View at Publisher · View at Google Scholar · View at Scopus
  38. K. Bleicher, M. Lin, M. J. Shapiro, and J. R. Wareing, “Diffusion edited NMR: screening compound mixtures by affinity NMR to detect binding ligands to vancomycin,” Journal of Organic Chemistry, vol. 63, no. 23, pp. 8486–8490, 1998. View at Publisher · View at Google Scholar · View at Scopus
  39. C. A. Gordon, N. A. Hodges, and C. Marriott, “Use of slime dispersants to promote antibiotic penetration through the extracellular polysaccharide of mucoid Pseudomonas aeruginosa,” Antimicrobial Agents and Chemotherapy, vol. 35, no. 6, pp. 1258–1260, 1991. View at Scopus
  40. M. B. Giers, C. S. Estes, A. C. McLaren, M. R. Caplan, and R. McLemore, “Jeannette Wilkins Award: can locally delivered gadolinium be visualized on MRI? A pilot study,” Clinical Orthopaedics and Related Research, vol. 470, no. 10, pp. 2654–2662, 2012. View at Publisher · View at Google Scholar
  41. M. B. Giers, A. C. McLaren, K. J. Schmidt, M. R. Caplan, and R. McLemore, “Magnetic resonance imaging drug distribution following local delivery in surgical wounds,” submitted.
  42. E. M. Haacke, R. W. Brown, M. R. Thompson, and R. Venkatesan, Magnetic Resonance Imaging: Physical Principles and Sequence Design, Wiley-Liss, 1st edition, 1999.
  43. P. Karasev, I. Kolesov, K. Chudy, A. Tannenbaum, G. Muller, and J. Xerogeanes, “Interactive MRI segmentation with controlled active vision,” in Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference, 2011.
  44. D. W. Eggert, A. Lorusso, and R. B. Fisher, “Estimating 3-D rigid body transformations: a comparison of four major algorithms,” Machine Vision and Applications, vol. 9, no. 5-6, pp. 272–290, 1997. View at Scopus
  45. X. Zhuang, S. Arridge, D. J. Hawkes, and S. Ourselin, “A nonrigid registration framework using spatially encoded mutual information and free form deformations,” IEEE Transactions on Medical Imaging, vol. 30, no. 10, pp. 1819–1828, 2011. View at Publisher · View at Google Scholar
  46. T. Boehler, F. Zoehrer, M. Harz, and H. K. Hahn, “Breast image registration and deformation modeling,” Critical Reviews in Biomedical Engineering, vol. 40, no. 3, pp. 235–258, 2012. View at Publisher · View at Google Scholar
  47. D. Loeckx, P. Slagmolen, F. Maes, D. Vandermeulen, and P. Suetens, “Nonrigid image registration using conditional mutual information,” IEEE Transactions on Medical Imaging, vol. 29, no. 1, pp. 19–29, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. D. Rueckert, L. I. Sonoda, C. Hayes, D. L. Hill, M. O. Leach, and D. J. Hawkes, “Nonrigid registration using free-form deformations: application to breast MR images,” IEEE Transactions on Medical Imaging, vol. 18, no. 8, pp. 712–721, 1999. View at Scopus
  49. L. Zhe, D. Deng, and W. Guang-Zhi, “Accuracy validation for medical image registration algorithms: a review,” Chinese Medical Sciences Journal, vol. 27, no. 3, pp. 176–181, 2012.
  50. D. H. Frakes, L. P. Dasi, K. Pekkan et al., “A new method for registration-based medical image interpolation,” IEEE Transactions on Medical Imaging, vol. 27, no. 3, pp. 370–377, 2008. View at Publisher · View at Google Scholar · View at Scopus