About this Journal Submit a Manuscript Table of Contents
Computational and Mathematical Methods in Medicine
Volume 2013 (2013), Article ID 262931, 11 pages
http://dx.doi.org/10.1155/2013/262931
Research Article

Scale-Specific Multifractal Medical Image Analysis

1Department of Physics, MIT-Harvard Center for Ultracold Atoms and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
2Department of Physics, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1233, USA

Received 10 June 2013; Accepted 17 July 2013

Academic Editor: Ricardo Femat

Copyright © 2013 Boris Braverman and Mauro Tambasco. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. B. Mandelbrot, The Fractal Geometry of Nature, W. H. Freeman, New York, NY, USA, 1977.
  2. D. S. Coffey, “Self-organization, complexity and chaos: the new biology for medicine,” Nature Medicine, vol. 4, no. 8, pp. 882–885, 1998. View at Publisher · View at Google Scholar · View at Scopus
  3. D. Avnir, O. Biham, D. Lidar, and O. Malcai, “Is the geometry of nature fractal?” Science, vol. 279, no. 5347, pp. 39–40, 1998. View at Publisher · View at Google Scholar · View at Scopus
  4. R. Femat, J. Alvarez-Ramirez, and M. Zarazua, “Chaotic behavior from a human biological signal,” Physics Letters A, vol. 214, no. 3-4, pp. 175–179, 1996. View at Scopus
  5. A. Espinoza-Valdez, F. C. Ordaz-Salazar, E. Ugalde, and R. Femat, “Analysis of a model for the morphological structure of renal arterial tree: fractal structure,” Journal of Applied Mathematics, vol. 2013, Article ID 396486, 6 pages, 2013. View at Publisher · View at Google Scholar
  6. R. Lopes and N. Betrouni, “Fractal and multifractal analysis: a review,” Medical Image Analysis, vol. 13, no. 4, pp. 634–649, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. O. Heymans, J. Fissette, P. Vico, S. Blacher, D. Masset, and F. Brouers, “Is fractal geometry useful in medicine and biomedical sciences?” Medical Hypotheses, vol. 54, no. 3, pp. 360–366, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. J. F. Veenland, J. L. Grashuis, F. van der Meer, A. L. D. Beckers, and E. S. Gelsema, “Estimation of fractal dimension in radiographs,” Medical Physics, vol. 23, no. 4, pp. 585–594, 1996. View at Publisher · View at Google Scholar · View at Scopus
  9. C. Fortin, R. Kumaresan, W. Ohley, and S. Hoefer, “Fractal dimension in the analysis of medical images,” IEEE Engineering in Medicine and Biology Magazine, vol. 11, no. 2, pp. 65–71, 1992. View at Publisher · View at Google Scholar · View at Scopus
  10. K. Falconer, Fractal Geometry: Mathematical Foundations and Applications., John Wiley & Sons, New York, NY, USA, 2nd edition, 2003. View at Publisher · View at Google Scholar
  11. M. Ciccotti and F. Mulargia, “Pernicious effect of physical cutoffs in fractal analysis,” Physical Review E, vol. 65, no. 3, Article ID 037201, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. H.-W. Chung and H.-J. Chung, “Correspondence re: J. W. Baish and R. K. Jain, Fractals and Cancer. Cancer Research, 60: 3683–3688, 2000,” Cancer Research, vol. 61, no. 22, pp. 8347–8350, 2001. View at Scopus
  13. M. Tambasco and A. M. Magliocco, “Relationship between tumor grade and computed architectural complexity in breast cancer specimens,” Human Pathology, vol. 39, no. 5, pp. 740–746, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Tambasco, “Scale issue in fractal analysis of histological specimens-reply,” Human Pathology, vol. 39, no. 12, pp. 1860–1861, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Tambasco, B. M. Costello, A. Kouznetsov, A. Yau, and A. M. Magliocco, “Quantifying the architectural complexity of microscopic images of histology specimens,” Micron, vol. 40, no. 4, pp. 486–494, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Tambasco, M. Eliasziw, and A. M. Magliocco, “Morphologic complexity of epithelial architecture for predicting invasive breast cancer survival,” Journal of Translational Medicine, vol. 8, no. 1, article 140, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. G. Landini and J. Paul Rigaut, “A method for estimating the dimension of asymptotic fractal sets,” Bioimaging, vol. 5, pp. 65–70, 1997.
  18. J. W. Dollinger, R. Metzler, and T. F. Nonnenmacher, “Bi-asymptotic fractals: fractals between lower and upper bounds,” Journal of Physics A, vol. 31, no. 16, pp. 3839–3847, 1998. View at Publisher · View at Google Scholar · View at Scopus
  19. R. Alfréd Rényi, “On measures of entropy and information,” in Proceedings of the 4th Berkeley Symposium on Mathematics, Statistics and Probability, vol. 1, pp. 547–561, 1960.
  20. M. J. Turner, J. M. Blackledge, and P. R. Andrews, Fractal Geometry in Digital Imaging, Academic Press, 1998.
  21. F. C. Crow, “Summed-area tables for texture mapping,” Computer Graphics, vol. 18, no. 3, pp. 207–212, 1984. View at Scopus
  22. P. Grassberger and I. Procaccia, “Characterization of strange attractors,” Physical Review Letters, vol. 50, no. 5, pp. 346–349, 1983. View at Publisher · View at Google Scholar · View at Scopus
  23. W. S. Cleveland, “Robust locally weighted regression and smoothing scatterplots,” Journal of the American Statistical Association, vol. 74, no. 368, pp. 829–836, 1979. View at MathSciNet
  24. H.-O. Peitgen, H. Jürgens, and D. Saupe, Chaos and Fractals: New Frontiers of Science, Springer, New York, NY, USA, 2nd edition, 2004.