About this Journal Submit a Manuscript Table of Contents
Computational and Mathematical Methods in Medicine
Volume 2013 (2013), Article ID 373082, 8 pages
http://dx.doi.org/10.1155/2013/373082
Research Article

Nonrigid Medical Image Registration Based on Mesh Deformation Constraints

1Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024, China
2Laboratory of Computer Science, Information Processing and Systems, University of Rouen, 76183 Rouen, France
3Department of Radiology, Second Affiliated Hospital of Dalian Medical University, Dalian 116027, China

Received 1 December 2012; Accepted 4 January 2013

Academic Editor: Peng Feng

Copyright © 2013 XiangBo Lin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Gholipour, N. Kehtarnavaz, R. Briggs, M. Devous, and K. Gopinath, “Brain functional localization: a survey of image registration techniques,” IEEE Transactions on Medical Imaging, vol. 26, no. 4, pp. 427–451, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Holden, “A review of geometric transformations for nonrigid body registration,” IEEE Transactions on Medical Imaging, vol. 27, no. 1, pp. 111–128, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Klein, J. Andersson, B. A. Ardekani et al., “Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration,” NeuroImage, vol. 46, no. 3, pp. 786–802, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. G. E. Christensen and H. J. Johnson, “Consistent image registration,” IEEE Transactions on Medical Imaging, vol. 20, no. 7, pp. 568–582, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. H. J. Johnson and G. E. Christensen, “Consistent landmark and intensity-based image registration,” IEEE Transactions on Medical Imaging, vol. 21, no. 5, pp. 450–461, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. D. Rueckert, L. I. Sonoda, C. Hayes, D. L. G. Hill, M. O. Leach, and D. J. Hawkes, “Nonrigid registration using free-form deformations: application to breast MR images,” IEEE Transactions on Medical Imaging, vol. 18, no. 8, pp. 712–721, 1999. View at Publisher · View at Google Scholar
  7. J. P. Thirion, “Image matching as a diffusion process: an analogy with Maxwell's demons,” Medical Image Analysis, vol. 2, no. 3, pp. 243–260, 1998. View at Scopus
  8. T. Rohlfing Jr., C. R. Maurer, D. A. Bluemke, and M. A. Jacobs, “Volume-preserving nonrigid registration of MR breast images using free-form deformation with an incompressibility constraint,” IEEE Transactions on Medical Imaging, vol. 22, no. 6, pp. 730–741, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. P. Dupuis, U. Grenander, and M. I. Miller, “Variational problems on flows of diffeomorphisms for image matching,” Quarterly of Applied Mathematics, vol. 56, no. 3, pp. 587–600, 1998. View at Scopus
  10. J. Ashburner, “A fast diffeomorphic image registration algorithm,” NeuroImage, vol. 38, no. 1, pp. 95–113, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Vercauteren, X. Pennec, A. Perchant, and N. Ayache, “Diffeomorphic demons: efficient non-parametric image registration,” NeuroImage, vol. 45, no. 1, pp. S61–72, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. M. I. Miller, A. Trouvé, and L. Younes, “On the metrics and Euler-Lagrange equations of computational anatomy,” Annual Review of Biomedical Engineering, vol. 4, pp. 375–405, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. M. F. Beg, M. I. Miller, A. Trouvé, and L. Younes, “Computing large deformation metric mappings via geodesic flows of diffeomorphisms,” International Journal of Computer Vision, vol. 61, no. 2, pp. 139–157, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. O. Musse, F. Heitz, and J. P. Armspach, “Topology preserving deformable image matching using constrained hierarchical parametric models,” IEEE Transactions on Image Processing, vol. 10, no. 7, pp. 1081–1093, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. V. Noblet, C. Heinrich, F. Heitz, and J. P. Armspach, “3-D deformable image registration: a topology preservation scheme based on hierarchical deformation models and interval analysis optimization,” IEEE Transactions on Image Processing, vol. 14, no. 5, pp. 553–566, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. B. Karaçalı and C. Davatzikos, “Estimating topology preserving and smooth displacement fields,” IEEE Transactions on Medical Imaging, vol. 23, pp. 868–880, 2004. View at Publisher · View at Google Scholar
  17. M. Sdika, “A fast nonrigid image registration with constraints on the Jacobian using large scale constrained optimization,” IEEE transactions on medical imaging, vol. 27, no. 2, pp. 271–281, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. X. Pennec, P. Cachier, and N. Ayache, “Understanding the “Demon’s algorithm”: 3D non-rigid registration by gradient descent,” in 2nd International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI ’99), pp. 19597–22605, Cambridge, UK, September 1999.
  19. J. K. Aggarwal and N. Nandhakumar, “On the computation of motion from sequences of images—a review,” Proceedings of the IEEE, vol. 76, no. 8, pp. 917–935, 1988. View at Publisher · View at Google Scholar · View at Scopus
  20. X. Lin, T. Qiu, F. Morain-Nicolier, and S. Ruan, “A topology preserving non-rigid registration algorithm with integration shape knowledge to segment brain subcortical structures from MRI images,” Pattern Recognition, vol. 43, no. 7, pp. 2418–2427, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. D. R. Mcdaniel and S. A. Morton, “Efficient mesh deformation for computational stability and control analyses on unstructured viscous meshes,” in Proceedings of the 47th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, AIAA Paper 2009-1363, Orlando, Fla, USA, January 2009. View at Scopus
  22. X. Zhou, S. X. Li, S. L. Sun, J. F. Liu, and B. Chen, “Advances in the research on unstructured mesh deformation,” Advances in Mechanics, vol. 41, pp. 547–561, 2011.
  23. J. T. Batina, “Unsteady Euler airfoil solutions using unstructured dynamic meshes,” AIAA journal, vol. 28, no. 8, pp. 1381–1388, 1990. View at Scopus
  24. F. J. Blom, “Considerations on the spring analogy,” International Journal for Numerical Methods in Fluids, vol. 32, pp. 647–668, 2000.
  25. P. Cachier, E. Bardinet, D. Dormont, X. Pennec, and N. Ayache, “Iconic feature based nonrigid registration: the PASHA algorithm,” Computer Vision and Image Understanding, vol. 89, no. 2-3, pp. 272–298, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. D. W. Shattuck and R. M. Leahy, “Brainsuite: an automated cortical surface identification tool,” Medical Image Analysis, vol. 6, no. 2, pp. 129–142, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. S. M. Smith, M. Jenkinson, M. W. Woolrich et al., “Advances in functional and structural MR image analysis and implementation as FSL,” NeuroImage, vol. 23, no. 1, pp. S208–S219, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. T. Vercauteren, X. Pennec, A. Perchant, and N. Ayache, “Diffeomorphic demons: efficient non-parametric image registration,” NeuroImage, vol. 45, supplement 1, pp. S61–S72, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. R. Kikinis, M. E. Shenton, D. V. Losifescu et al., “A digital brain atlas for surgical planning, model-driven segmentation, and teaching,” IEEE Transactions on Visualization and Computer Graphics, vol. 2, no. 3, pp. 232–241, 1996. View at Scopus
  30. “Internet brain segmentation repository,” M. G. H. Technical Report, Center for Morphometric Analysis IBSR, 2000, http://www.cma.mgh.harvard.edu/ibsr/.