About this Journal Submit a Manuscript Table of Contents
Computational and Mathematical Methods in Medicine
Volume 2013 (2013), Article ID 405325, 9 pages
http://dx.doi.org/10.1155/2013/405325
Research Article

EIT-Based Fabric Pressure Sensing

1Engineering Tomography Laboratory (ETL), Department of Electronic and Electrical Engineering, University of Bath, Bath BA2 7AY, UK
2Department of Computational Science and Engineering, Yonsei University, Seoul 120-749, Republic of Korea

Received 9 October 2012; Revised 10 January 2013; Accepted 21 January 2013

Academic Editor: Eung Je Woo

Copyright © 2013 A. Yao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Yao and M. Soleimani, “A pressure mapping imaging device based on electrical impedance tomography of conductive fabrics,” Sensor Review, vol. 32, no. 4, pp. 310–317, 2012.
  2. R. Wijesiriwardana, K. Mitcham, W. Hurley, and T. Dias, “Capacitive fiber-meshed transducers for touch and proximity-sensing applications,” IEEE Sensors Journal, vol. 5, no. 5, pp. 989–994, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Ueno, Y. Akabane, T. Kato, H. Hoshino, S. Kataoka, and Y. Ishiyama, “Capacitive sensing of electrocardiographic potential through cloth from the dorsal surface of the body in a supine position: a Preliminary study,” IEEE Transactions on Biomedical Engineering, vol. 54, no. 4, 2007.
  4. J. C. Doll, S. J. Park, and B. L. Pruitt, “Design optimization of piezoresistive cantilevers for force sensing in air and water,” Journal of Applied Physics, vol. 106, no. 6, Article ID 064310, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. H. H. Gharib and W. A. Moussa, “On the feasibility of a new approach for developing a piezoresistive 3D stress sensing rosette,” IEEE Sensors Journal, vol. 11, no. 9, pp. 1861–1871, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Feneberg, K. Thonke, T. Wunderer, F. Lipski, and F. Scholz, “Piezoelectric polarization of semipolar and polar GaInN quantum wells grown on strained GaN templates,” Journal of Applied Physics, vol. 107, no. 10, Article ID 103517, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Willatzen, B. Lassen, L. C. Lew Yan Voon, and R. V. N. Melnik, “Dynamic coupling of piezoelectric effects, spontaneous polarization, and strain in lattice-mismatched semiconductor quantum-well heterostructures,” Journal of Applied Physics, vol. 100, no. 2, Article ID 024302, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. D.-J. Choi, C.-T. Rim, S. Kim, and Y. K. Kwak, “High sensitivity inductive sensing system for position measurement,” in Proceedings of the 17th IEEE Instrumentation and Measurement Technology Conference (IMTC '00), 2000.
  9. A. Drumea, P. Svasta, and M. Blejan, “Modelling and simulation of an inductive displacement sensor for mechatronic systems,” in Proceedings of the 33rd International Spring Seminar on Electronics Technology (ISSE '10), pp. 304–307, May 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. A. M. Lebar, G. F. Harris, J. J. Wertsch, and H. Zhu, “An optoelectric plantar “shear” sensing transducer: design, validation, and preliminary subject tests,” IEEE Transactions on Rehabilitation Engineering, vol. 4, no. 4, pp. 310–319, 1996. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. H. Wen, G. Y. Yang, V. J. Bailey, G. Lin, W. C. Tang, and J. H. Keyak, “Mechanically robust micro-fabricated strain gauges for use on bones,” in Proceedings of the 3rd IEEE/EMBS Special Topic Conference on Microtechnology in Medicine and Biology, pp. 302–304, May 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Kim, Y. Kim, C. Lee, and S. Kwon, “Thin polysilicon gauge for strain measurement of structural elements,” IEEE Sensors Journal, vol. 10, no. 8, pp. 1320–1327, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. K. S. Jaichandar and E. A. M. Garcia, “Intelli-sense bed patient movement sensing and anti-sweating system for bed sore prevention in a clinical environment,” in Proceedings of the 8th International Conference on Information, Communications and Signal Processing (ICICS '11), 2011.
  14. H. Ruser, “Smart low-cost weather sensor as an example for “multi-component” sensors,” in Proceedings of the IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI '06), pp. 559–564, September 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. J. H. Cho, M. Kothare, and M. G. Arnold, “Reconfigurable multi-component sensors built from MEMS payloads carried by micro-robots,” in Proceedings of the IEEE Sensors Applications Symposium (SAS '10), pp. 15–19, February 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Reddy, S. S. Gill, and P. A. Rochon, “Preventing pressure ulcers: a systematic review,” Journal of the American Medical Association, vol. 296, no. 8, pp. 974–984, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. W. S. Fulton and R. T. Lipczynski, “Body-support pressure measurement using electrical impedance tomography,” in Proceedings of the 15th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 98–99, October 1993. View at Scopus
  18. F. Carpi and D. De Rossi, “Electroactive polymer-based devices for e-textiles in biomedicine,” IEEE Transactions on Information Technology in Biomedicine, vol. 9, no. 3, pp. 295–318, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Hassan, A. Nagakubo, and Y. Kuniyoshi, “A tactile distribution sensor which enables stable measurement under high and dynamic stretch,” in Proceedings of the IEEE Symposium on 3D User Interfaces (3DUI '09), pp. 87–93, March 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Elsanadedy, Y. Mamatjan, M. Ahmadi, and A. Adler, “Characterisation of conductive polymer for EIT based sensor,” in Proceedings of the International Conference on Electrical and Computer Systems (ICECS '12), Ottawa, Canada, August 2012.
  21. E. Somersalo, M. Cheney, and D. Isaacson, “Existence and uniqueness for electrode models for electric current computed tomography,” SIAM Journal on Applied Mathematics, vol. 52, no. 4, pp. 1023–1040, 1992. View at Scopus
  22. Y. Tada and T. Yasunori, “A flexible and stretchable tactile sensor utilizing static electricity,” in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '07), pp. 684–689, November 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. LR-SL-PA-10E5, Eeontex Conductive Stretchable Fabric, Eeonyx Corporation, 2009.
  24. NW170-SL-PA-1500, Eeontex Conductive Nonwoven Fabric, Eeonyx Corporation, 2009.