About this Journal Submit a Manuscript Table of Contents
Computational and Mathematical Methods in Medicine
Volume 2013 (2013), Article ID 472564, 9 pages
http://dx.doi.org/10.1155/2013/472564
Research Article

CFD Modelling of Abdominal Aortic Aneurysm on Hemodynamic Loads Using a Realistic Geometry with CT

1Centre Internacional de Mètodes Numèrics en Enginyeria, Biomedical Engineering Department, Technical University of Catalonia, C/Gran Capità, s/n, 08034 Barcelona, Spain
2School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
3Department of General Surgery, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore 308433

Received 2 November 2012; Revised 17 May 2013; Accepted 1 June 2013

Academic Editor: Eun Bo Shim

Copyright © 2013 Eduardo Soudah et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. A. Vorp, “Biomechanics of abdominal aortic aneurysm,” Journal of Biomechanics, vol. 40, no. 9, pp. 1887–1902, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. J. D. Humphrey, Cardiovascular Solid Mechanics. Cells, Tissues, and Organs, Springer, New York, NY, USA, 2002.
  3. J. T. Powell, L. C. Brown, J. F. Forbes et al., “Final 12-year follow-up of surgery versus surveillance in the UK Small Aneurysm Trial,” British Journal of Surgery, vol. 94, no. 6, pp. 702–708, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. S. C. Nicholls, J. B. Gardner, M. H. Meissner, and K. H. Johansen, “Rupture in small abdominal aortic aneurysms,” Journal of Vascular Surgery, vol. 28, no. 5, pp. 884–888, 1998. View at Scopus
  5. M. L. Raghavan and D. A. Vorp, “Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: identification of a finite strain constitutive model and evaluation of its applicability,” Journal of Biomechanics, vol. 33, no. 4, pp. 475–482, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Biasetti, F. Hussain, and T. Christian Gasser, “Blood flow and coherent vortices in the normal and aneurysmatic aortas: a fluid dynamical approach to intraluminal thrombus formation,” Journal of the Royal Society Interface, vol. 8, no. 63, pp. 1449–1461, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. C. M. Scotti and E. A. Finol, “Compliant biomechanics of abdominal aortic aneurysms: a fluid-structure interaction study,” Computers and Structures, vol. 85, no. 11–14, pp. 1097–1113, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. D. A. Vorp, M. L. Raghavan, and M. W. Webster, “Mechanical wall stress in abdominal aortic aneurysm: influence of diameter and asymmetry,” Journal of Vascular Surgery, vol. 27, no. 4, pp. 632–639, 1998. View at Publisher · View at Google Scholar · View at Scopus
  9. E. A. Finol, K. Keyhani, and C. H. Amon, “The effect of asymmetry in abdominal aortic aneurysms under physiologically realistic pulsatile flow conditions,” Journal of Biomechanical Engineering, vol. 125, no. 2, pp. 207–217, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. W. A. Cappeller, H. Engelmann, S. Blechschmidt, M. Wild, and L. Lauterjung, “Possible objectification of a critical maximum diameter for elective surgery in abdominal aortic aneurysms based on one- and three-dimensional ratios,” Journal of Cardiovascular Surgery, vol. 38, no. 6, pp. 623–628, 1997. View at Scopus
  11. K. Ouriel, R. M. Green, C. Donayre, C. K. Shortell, J. Elliott, and J. A. DeWeese, “An evaluation of new methods of expressing aortic aneurysm size: relationship to rupture,” Journal of Vascular Surgery, vol. 15, no. 1, pp. 12–20, 1992. View at Scopus
  12. T. C. Gasser, M. Auer, F. Labruto, J. Swedenborg, and J. Roy, “Biomechanical rupture risk assessment of abdominal aortic aneurysms: model complexity versus predictability of finite element simulations,” European Journal of Vascular and Endovascular Surgery, vol. 40, no. 2, pp. 176–185, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Bonert, R. L. Leask, J. Butany et al., “The relationship between wall shear stress distributions and intimal thickening in the human abdominal aorta,” BioMedical Engineering Online, vol. 2, article 18, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. D. Bluestein, L. Niu, R. T. Schoephoerster, and M. K. Dewanjee, “Steady flow in an aneurysm model: correlation between fluid dynamics and blood platelet deposition,” Journal of Biomechanical Engineering, vol. 118, no. 3, pp. 280–286, 1996. View at Scopus
  15. M. L. Raghavan, D. A. Vorp, M. P. Federle, M. S. Makaroun, and M. W. Webster, “Wall stress distribution on three-dimensionally reconstructed models of human abdominal aortic aneurysm,” Journal of Vascular Surgery, vol. 31, no. 4, pp. 760–769, 2000. View at Scopus
  16. C. Kleinstreuer and Z. Li, “Analysis and computer program for rupture-risk prediction of abdominal aortic aneurysms,” BioMedical Engineering Online, vol. 5, article 19, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Shum, G. Martufi, E. di Martino et al., “Quantitative assessment of abdominal aortic aneurysm geometry,” Annals of Biomedical Engineering, vol. 39, no. 1, pp. 277–286, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. D. A. Vorp, P. C. Lee, D. H. J. Wang et al., “Association of intraluminal thrombus in abdominal aortic aneurysm with local hypoxia and wall weakening,” Journal of Vascular Surgery, vol. 34, no. 2, pp. 291–299, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. D. Bluestein, K. Dumont, M. de Beule et al., “Intraluminal thrombus and risk of rupture in patient specific abdominal aortic aneurysm—FSI modelling,” Computer Methods in Biomechanics and Biomedical Engineering, vol. 12, no. 1, pp. 73–81, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. E. Soudah, J. Pennecot, J. S. Perez, M. Bordone, and E. Oñate, “Medical-GiD: from medical images to simulations, 4D MRI flow analysis,” in Computational Vision and Medical Image Processing: Recent Trends, chapter 10, Springer, New York, NY, USA, 1871.
  21. E. Soudah, M. Bordone, and J. S. Perez, “Gmed: a platform for images treatment inside GiD system,” in Proceedings of the 5th Conference On Advances And Applications Of GiD, Barcelona, 2010, GiD—the personal pre and postprocessor, http://www.gidhome.com/.
  22. W. E. Lorensen and H. E. Cline, “Marching cubes: a high resolution 3d surface construction algorithm,” in Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '87), pp. 163–169, 1987.
  23. M. Bordone, C. García, J. García, and E. Soudah, “Biodyn User Manual. TDYN: theoretical Background,” COMPASSIS, 2012, http://www.compassis.com/compass.
  24. E. Oñate, S. Idelsohn, O. C. Zienkiewicz, and R. L. Taylor, “A finite point method in computational mechanics. Applications to convective transport and fluid flow,” International Journal for Numerical Methods in Engineering, vol. 39, no. 22, pp. 3839–3866, 1996. View at Scopus
  25. Y. Papaharilaou, J. A. Ekaterinaris, E. Manousaki, and A. N. Katsamouris, “A decoupled fluid structure approach for estimating wall stress in abdominal aortic aneurysms,” Journal of Biomechanics, vol. 40, no. 2, pp. 367–377, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. A.-V. Salsac, S. R. Sparks, J.-M. Chomaz, and J. C. Lasheras, “Evolution of the wall shear stresses during the progressive enlargement of symmetric abdominal aortic aneurysms,” Journal of Fluid Mechanics, vol. 560, pp. 19–51, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. C. M. Scotti, J. Jimenez, S. C. Muluk, and E. A. Finol, “Wall stress and flow dynamics in abdominal aortic aneurysms: finite element analysis vs. fluid-structure interaction,” Computer Methods in Biomechanics and Biomedical Engineering, vol. 11, no. 3, pp. 301–322, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Borghia, N. B. Wooda, R. H. Mohiaddinb, and X. Y. Xua, “Fluid-solid interaction simulation of flow and stress pattern in thoraco abdominal aneurysms: a patient-specific study,” Journal of Fluids and Structures, vol. 24, pp. 270–280, 2008. View at Publisher · View at Google Scholar
  29. A. Sheidaei, S. C. Hunley, S. Zeinali-Davarani, L. G. Raguin, and S. Baek, “Simulation of abdominal aortic aneurysm growth with updating hemodynamic loads using a realistic geometry,” Medical Engineering and Physics, vol. 33, no. 1, pp. 80–88, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. T. Hatakeyama, H. Shigematsu, and T. Muto, “Risk factors for rupture of abdominal aortic aneurysm based on three-dimensional study,” Journal of Vascular Surgery, vol. 33, no. 3, pp. 453–461, 2001. View at Publisher · View at Google Scholar · View at Scopus