About this Journal Submit a Manuscript Table of Contents
Computational and Mathematical Methods in Medicine
Volume 2013 (2013), Article ID 706195, 20 pages
http://dx.doi.org/10.1155/2013/706195
Research Article

Optimisation of a Generic Ionic Model of Cardiac Myocyte Electrical Activity

Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia

Received 19 November 2012; Revised 11 February 2013; Accepted 18 February 2013

Academic Editor: Henggui Zhang

Copyright © 2013 Tianruo Guo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. C. Sigg, P. A. Iaizzo, Y. F. Xiao, and B. He, Cardiac Electrophysiology Methods and Models, Springer, New York, NY, USA, 2010.
  2. R. L. Winslow, D. F. Scollan, A. Holmes, C. K. Yung, J. Zhang, and M. S. Jafri, “Electrophysiological modeling of cardiac ventricular function: from cell to organ,” Annual Review of Biomedical Engineering, vol. 2, no. 2000, pp. 119–155, 2000. View at Scopus
  3. M. Fink, S. A. Niederer, E. M. Cherry et al., “Cardiac cell modelling: observations from the heart of the cardiac physiome project,” Progress in Biophysics and Molecular Biology, vol. 104, no. 1–3, pp. 2–21, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. R. Fitzhugh, “Impulses and physiological states in theoretical models of nerve membrane,” Biophysical Journal, vol. 1, no. 6, pp. 445–466, 1961. View at Publisher · View at Google Scholar
  5. A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane current and its application to conduction and excitation in nerve,” The Journal of Physiology, vol. 117, no. 4, pp. 500–544, 1952. View at Scopus
  6. M. Courtemanche, W. Skaggs, and A. T. Winfree, “Stable three-dimensional action potential circulation in the Fitzhugh-Nagumo model,” Physica D, vol. 41, no. 2, pp. 173–182, 1990. View at Scopus
  7. B. Y. Kogan, W. J. Karplus, B. S. Billett, A. T. Pang, H. S. Karagueuzian, and S. S. Khan, “The simplified FitzHugh-Nagumo model with action potential duration restitution: effects on 2D wave propagation,” Physica D, vol. 50, no. 3, pp. 327–340, 1991. View at Scopus
  8. R. R. Aliev and A. V. Panfilov, “A simple two-variable model of cardiac excitation,” Chaos, Solitons and Fractals, vol. 7, no. 3, pp. 293–301, 1996. View at Publisher · View at Google Scholar · View at Scopus
  9. M. P. Nash and A. V. Panfilov, “Electromechanical model of excitable tissue to study reentrant cardiac arrhythmias,” Progress in Biophysics and Molecular Biology, vol. 85, no. 2-3, pp. 501–522, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. C. H. Luo and Y. Rudy, “A model of the ventricular cardiac action potential. Depolarization, repolarization, and their interaction,” Circulation Research, vol. 68, no. 6, pp. 1501–1526, 1991. View at Scopus
  11. G. W. Beeler and H. Reuter, “Reconstruction of the action potential of ventricular myocardial fibres,” The Journal of Physiology, vol. 268, no. 1, pp. 177–210, 1977. View at Scopus
  12. F. H. Fenton and A. Karma, “Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: filament instability and fibrillation,” Chaos, vol. 8, no. 1, pp. 20–47, 1998. View at Publisher · View at Google Scholar
  13. F. H. Fenton, E. M. Cherry, H. M. Hastings, and S. J. Evans, “Multiple mechanisms of spiral wave breakup in a model of cardiac electrical activity,” Chaos, vol. 12, no. 3, pp. 852–892, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. E. M. Cherry, J. R. Ehrlich, S. Nattel, and F. H. Fenton, “Pulmonary vein reentry—properties and size matter: insights from a computational analysis,” Heart Rhythm, vol. 4, no. 12, pp. 1553–1562, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Nattel, B. Burstein, and D. Dobrev, “Atrial remodeling and atrial fibrillation: mechanisms and implications,” Circulation, vol. 1, no. 1, pp. 62–73, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Courtemanche, R. J. Ramirez, and S. Nattel, “Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model,” The American Journal of Physiology, vol. 275, no. 1, pp. H301–H321, 1998. View at Scopus
  17. E. M. Cherry and F. H. Fenton, “A tale of two dogs: analyzing two models of canine ventricular electrophysiology,” The American Journal of Physiology, vol. 292, no. 1, pp. H43–H55, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. Z. S. Dastgheib, A. Azemi, M. Khademi et al., “Identification of ionic conductances in a reentry model of ventricular myocardium cells,” Journal of Applied Sciences, vol. 9, no. 3, pp. 555–560, 2009. View at Scopus
  19. Z. Syed, E. Vigmond, S. Nattel, and L. J. Leon, “Atrial cell action potential parameter fitting using genetic algorithms,” Medical and Biological Engineering and Computing, vol. 43, no. 5, pp. 561–571, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Dokos and N. H. Lovell, “Parameter estimation in cardiac ionic models,” Progress in Biophysics and Molecular Biology, vol. 85, no. 2-3, pp. 407–431, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. I. Kodama, M. R. Boyett, M. R. Nikmaram, M. Yamamoto, H. Honjo, and R. Niwa, “Regional differences in effects of E-4031 within the sinoatrial node,” The American Journal of Physiology, vol. 276, no. 3, pp. H793–H802, 1999. View at Scopus
  22. B. Hille, Ion Channels of Excitable Membranes, Sinauer Associates, Sunderland, Mass, USA, 3rd edition, 2001.
  23. A. Bueno-Orovio, E. M. Cherry, and F. H. Fenton, “Minimal model for human ventricular action potentials in tissue,” Journal of Theoretical Biology, vol. 253, no. 3, pp. 544–560, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. E. M. Cherry and F. H. Fenton, “Suppression of alternans and conduction blocks despite steep APD restitution: electrotonic, memory, and conduction velocity restitution effects,” The American Journal of Physiology, vol. 286, no. 6, pp. H2332–H2341, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. K. H. W. J. T. Tusscher and A. V. Panfilov, “Alternans and spiral breakup in a human ventricular tissue model,” The American Journal of Physiology, vol. 291, no. 3, pp. H1088–H1100, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. D. S. Lindblad, C. R. Murphey, J. W. Clark, and W. R. Giles, “A model of the action potential and underlying membrane currents in a rabbit atrial cell,” The American Journal of Physiology, vol. 271, no. 4, pp. H1666–H1696, 1996. View at Scopus
  27. S. Dokos, B. Celler, and N. Lovell, “Ion currents underlying sinoatrial node pacemaker activity: a new single cell mathematical model,” Journal of Theoretical Biology, vol. 181, no. 3, pp. 245–272, 1996. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Nattel, “New ideas about atrial fibrillation 50 years on,” Nature, vol. 415, no. 6868, pp. 219–226, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. N. H. Lovell, S. L. Cloherty, B. G. Celler, and S. Dokos, “A gradient model of cardiac pacemaker myocytes,” Progress in Biophysics and Molecular Biology, vol. 85, no. 2-3, pp. 301–323, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. H. Zhang, A. V. Holden, I. Kodama et al., “Mathematical models of action potentials in the periphery and center of the rabbit sinoatrial node,” The American Journal of Physiology, vol. 279, no. 1, pp. H397–H421, 2000.
  31. G. M. Faber, J. Silva, L. Livshitz, and Y. Rudy, “Kinetic properties of the cardiac L-type Ca2+ channel and its role in myocyte electrophysiology: a theoretical investigation,” Biophysical Journal, vol. 92, no. 5, pp. 1522–1543, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. J. C. Hancox, A. J. Levi, and H. J. Witchel, “Time course and voltage dependence of expressed HERG current compared with native “rapid” delayed rectifier K current during the cardiac ventricular action potential,” Pflugers Archiv—European Journal of Physiology, vol. 436, no. 6, pp. 843–853, 1998. View at Publisher · View at Google Scholar · View at Scopus
  33. T. Doerr, R. Denger, and W. Trautwein, “Calcium currents in single SA nodal cells of the rabbit heart studied with action potential clamp,” Pflugers Archiv—European Journal of Physiology, vol. 413, no. 6, pp. 599–603, 1989. View at Scopus
  34. N. Kim, M. B. Cannell, and P. J. Hunter, “Changes in the calcium current among different transmural regions contributes to action potential heterogeneity in rat heart,” Progress in Biophysics and Molecular Biology, vol. 103, no. 1, pp. 28–34, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. L. Yue, J. Feng, R. Gaspo, G. R. Li, Z. Wang, and S. Nattel, “Ionic remodeling underlying action potential changes in a canine model of atrial fibrillation,” Circulation Research, vol. 81, no. 4, pp. 512–525, 1997. View at Scopus
  36. M. E. Mangoni, B. Couette, L. Marger, E. Bourinet, J. Striessnig, and J. Nargeot, “Voltage-dependent calcium channels and cardiac pacemaker activity: from ionic currents to genes,” Progress in Biophysics and Molecular Biology, vol. 90, no. 1–3, pp. 38–63, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. G. Berecki, J. G. Zegers, R. Wilders, and A. C. van Ginneken, “Cardiac channelopathies studied with the dynamic action potential-clamp technique,” Methods in Molecular Biology, vol. 403, pp. 233–250, 2007. View at Scopus
  38. A. Nygren, C. Fiset, L. Firek et al., “Mathematical model of an adult human atrial cell: the role of K+ currents in repolarization,” Circulation Research, vol. 82, no. 1, pp. 63–81, 1998. View at Scopus
  39. H. Honjo, M. R. Boyett, I. Kodama, and J. Toyama, “Correlation between electrical activity and the size of rabbit sino-atrial node cells,” The Journal of Physiology, vol. 496, no. 3, pp. 795–808, 1996. View at Scopus
  40. M. Lei and M. R. Boyett, “Inhibition of transient outward current, it(to), by flecainide and quinidine in rabbit isolated sinoatrial node cells,” The Journal of Physiology, vol. 511, pp. 78–79, 1998.
  41. A. X. Sarkar and E. A. Sobie, “Regression analysis for constraining free parameters in electrophysiological models of cardiac cells,” PLoS Computational Biology, vol. 6, no. 9, Article ID e1000914, 2010. View at Publisher · View at Google Scholar · View at Scopus