About this Journal Submit a Manuscript Table of Contents
Computational and Mathematical Methods in Medicine
Volume 2013 (2013), Article ID 718423, 27 pages
http://dx.doi.org/10.1155/2013/718423
Review Article

Recent Advances in Computational Mechanics of the Human Knee Joint

Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada T2N 1N4

Received 31 August 2012; Revised 21 November 2012; Accepted 20 December 2012

Academic Editor: Rami K. Korhonen

Copyright © 2013 M. Kazemi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. M. Daniels, Knee Ligaments: Structure, Function, Injury and Repair, Raven Press, New York, NY, USA, 1990.
  2. N. G. Shrive, J. J. O'Connor, and J. W. Goodfellow, “Load-bearing in the knee joint,” Clinical Orthopaedics and Related Research, vol. 131, pp. 279–287, 1978. View at Scopus
  3. W. A. Brekelmans, H. W. Poort, and T. J. Slooff, “A new method to analyse the mechanical behaviour of skeletal parts,” Acta Orthopaedica Scandinavica, vol. 43, no. 5, pp. 301–317, 1972. View at Scopus
  4. R. Huiskes and E. Y. S. Chao, “A survey of finite element analysis in orthopedic biomechanics: the first decade,” Journal of Biomechanics, vol. 16, no. 6, pp. 385–409, 1983. View at Scopus
  5. S. E. Clift, “Finite-element analysis in cartilage biomechanics,” Journal of Biomedical Engineering, vol. 14, no. 3, pp. 217–221, 1992. View at Publisher · View at Google Scholar
  6. A. A. J. Goldsmith, A. Hayes, and S. E. Clift, “Application of finite elements to the stress analysis of articular cartilage,” Medical Engineering and Physics, vol. 18, no. 2, pp. 89–98, 1996. View at Publisher · View at Google Scholar · View at Scopus
  7. E. M. Hasler, W. Herzog, J. Z. Wu, et al., “Articular cartilage biomechanics: theoretical models, material properties, and biosynthetic response,” Critical Reviews in Biomedical Engineering, vol. 27, no. 6, pp. 415–488, 1999.
  8. S. Knecht, B. Vanwanseele, and E. Stüssi, “A review on the mechanical quality of articular cartilage-implications for the diagnosis of osteoarthritis,” Clinical Biomechanics, vol. 21, no. 10, pp. 999–1012, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. W. Wilson, C. C. Van Donkelaar, R. Van Rietbergen, and R. Huiskes, “The role of computational models in the search for the mechanical behavior and damage mechanisms of articular cartilage,” Medical Engineering and Physics, vol. 27, no. 10, pp. 810–826, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. Z. A. Taylor and K. Miller, “Constitutive modeling of cartilaginous tissues: a review,” Journal of Biomechanics, vol. 22, no. 3, pp. 212–229, 2006.
  11. C. C. van Donkelaar and R. M. Schulz, “Review on patents for mechanical stimulation of articular cartilage,” Recent Patents on Biomedical Engineering, vol. 1, pp. 1–12, 2008.
  12. S. L. Woo, G. A. Johnson, and B. A. Smith, “Mathematical modeling of ligaments and tendons,” Journal of Biomechanical Engineering, vol. 115, no. 4, pp. 468–473, 1993. View at Publisher · View at Google Scholar
  13. J. A. Weiss and J. C. Gardiner, “Computational modeling of ligament mechanics,” Critical Reviews in Biomedical Engineering, vol. 29, no. 3, pp. 303–371, 2001. View at Publisher · View at Google Scholar
  14. J. A. Weiss, J. C. Gardiner, B. J. Ellis, et al., “Three-dimensional finite element modeling of ligaments: technical aspects,” Medical Engineering & Physics, vol. 27, no. 10, pp. 845–861, 2005. View at Publisher · View at Google Scholar
  15. P. P. Provenzano, R. S. Lakes, D. T. Corr, and R. R, “Application of nonlinear viscoelastic models to describe ligament behavior,” Biomechanics and modeling in mechanobiology, vol. 1, no. 1, pp. 45–57, 2002. View at Scopus
  16. M. S. Hefzy and E. S. Grood, “Review of knee models,” Applied Mechanics Reviews, vol. 41, no. 1, pp. 1–13, 1988. View at Publisher · View at Google Scholar
  17. M. S. Hefzy and T. D. V. Cooke, “Review of knee models: 1996 update,” Applied Mechanics Reviews, vol. 49, no. 10, pp. S187–S193, 1996. View at Scopus
  18. E. Peña, A. Pérez Del Palomar, B. Calvo, M. A. Martínez, and M. Doblaré, “Computational modelling of diarthrodial joints. Physiological, pathological and pos-surgery simulations,” Archives of Computational Methods in Engineering, vol. 14, no. 1, pp. 47–91, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. J. J. Elias and A. J. Cosgarea, “Computational modeling: an alternative approach for investigating patellofemoral mechanics,” Sports Medicine and Arthroscopy Review, vol. 15, no. 2, pp. 89–94, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Mackerle, “Finite element modeling and simulations in orthopedics: a bibliography 1998–2005,” Computer Methods in Biomechanics and Biomedical Engineering, vol. 9, no. 3, pp. 149–199, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. V. C. Mow and A. Ratcliffe, Biomechanics of Diarthrodial Joints, Springer, New York, NY, USA, 1990.
  22. D. Heinegård and A. Oldberg, “Structure and biology of cartilage and bone matrix noncollagenous macromolecules,” FASEB Journal, vol. 3, no. 9, pp. 2042–2051, 1989. View at Scopus
  23. G. E. Kempson, M. A. R. Freeman, and S. A. V. Swanson, “The determination of a creep modulus for articular cartilage from indentation tests on the human femoral head,” Journal of Biomechanics, vol. 4, no. 4, pp. 239–250, 1971. View at Scopus
  24. J. M. Coletti, W. H. Akeson, and S. L. Woo, “A comparison of the physical behavior of normal articular cartilage and the arthroplasty surface,” Journal of Bone and Joint Surgery A, vol. 54, no. 1, pp. 147–160, 1972. View at Scopus
  25. W. C. Hayes and L. F. Mockros, “Viscoelastic properties of human articular cartilage,” Journal of Applied Physiology, vol. 31, no. 4, pp. 562–568, 1971.
  26. W. C. Hayes, L. M. Keer, G. Herrmann, and L. F. Mockros, “A mathematical analysis for indentation tests of articular cartilage,” Journal of Biomechanics, vol. 5, no. 5, pp. 541–551, 1972. View at Scopus
  27. J. R. Parsons and J. Black, “The viscoelastic shear behavior of normal rabbit articular cartilage,” Journal of Biomechanics, vol. 10, no. 1, pp. 21–29, 1977. View at Scopus
  28. C. G. Armstrong, A. S. Bahrani, and D. L. Gardner, “Changes in the deformational behavior of human hip cartilage with age,” Journal of Biomechanical Engineering, vol. 102, no. 3, pp. 214–220, 1980. View at Scopus
  29. C. G. Armstrong, W. M. Lai, and V. C. Mow, “An analysis of the unconfined compression of articular cartilage,” Journal of Biomechanical Engineering, vol. 106, no. 2, pp. 165–173, 1984. View at Scopus
  30. J. Yao, P. D. Funkenbusch, J. Snibbe, M. Maloney, and A. L. Lerner, “Sensitivities of medial meniscal motion and deformation to material properties of articular cartilage, meniscus and meniscal attachments using design of experiments methods,” Journal of Biomechanical Engineering, vol. 128, no. 3, pp. 399–408, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Oloyede, R. Flachsmann, and N. D. Broom, “The dramatic influence of loading velocity on the compressive response of articular cartilage,” Connective Tissue Research, vol. 27, no. 4, pp. 211–224, 1992. View at Scopus
  32. L. P. Li and K. B. Gu, “Reconsideration on the use of elastic models to predict the instantaneous load response of the knee joint,” Proceedings of the Institution of Mechanical Engineers H, vol. 225, no. 9, pp. 888–896, 2011. View at Publisher · View at Google Scholar
  33. L. P. Li, M. D. Buschmann, and A. Shirazi-Adl, “Strain-rate dependent stiffness of articular cartilage in unconfined compression,” Journal of Biomechanical Engineering, vol. 125, no. 2, pp. 161–168, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. M. A. Biot, “General theory of three-dimensional consolidation,” Journal of Applied Physics, vol. 12, no. 2, pp. 155–164, 1941. View at Publisher · View at Google Scholar · View at Scopus
  35. M. A. Biot, “Theory of elasticity and consolidation for a porous anisotropic solid,” Journal of Applied Physics, vol. 26, no. 2, pp. 182–185, 1955. View at Publisher · View at Google Scholar · View at Scopus
  36. J. L. Nowinski and C. F. Davis, “A model of the human skull as a poroelastic spherical shell subjected to a quasistatic load,” Mathematical Biosciences, vol. 8, no. 3-4, pp. 397–416, 1970. View at Scopus
  37. J. Nowinski, “Bone articulations as systems of poroelastic bodies in contact,” AIAA Journal, vol. 9, no. 1, pp. 62–67, 1971. View at Scopus
  38. J. L. Nowinski, “Stress concentration around a cylindrical cavity in a bone treated as a poroelastic body,” Acta Mechanica, vol. 13, no. 3-4, pp. 281–292, 1972. View at Publisher · View at Google Scholar · View at Scopus
  39. V. C. Mow, S. C. Kuei, W. M. Lai, and C. G. Armstrong, “Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments,” Journal of Biomechanical Engineering, vol. 102, no. 1, pp. 73–84, 1980. View at Scopus
  40. W. M. Lai, V. C. Mow, and V. Roth, “Effects of non-linear strain-dependent permeability and rate of compression on the stress behaviour of articular cartilage,” Journal of Biomechanical Engineering, vol. 103, no. 2, pp. 61–66, 1981. View at Publisher · View at Google Scholar
  41. J. K. Suh, R. L. Spilker, and V. C. Mow, “Finite element analysis of the indentation problem for articular cartilage using a finite deformation biphasic model,” in Winter Annual Meeting of the American Society of Mechanical Engineers, pp. 215–218, November 1990. View at Scopus
  42. J. K. Suh, R. L. Spilker, and M. H. Holmes, “Penalty finite element analysis for non-linear mechanics of biphasic hydrated soft tissue under large deformation,” International Journal for Numerical Methods in Engineering, vol. 32, no. 7, pp. 1411–1439, 1991. View at Scopus
  43. B. R. Simon, “Multiphase poroelastic finite element models for soft tissue structures,” Applied Mechanics Reviews, vol. 45, no. 6, pp. 191–218, 1992. View at Scopus
  44. M. Schanz and S. Diebels, “A comparative study of Biot's theory and the linear theory of porous media for wave propagation problems,” Acta Mechanica, vol. 161, no. 3-4, pp. 213–235, 2003. View at Scopus
  45. T. D. Brown and R. J. Singerman, “Experimental determination of the linear biphasic constitutive coefficients of human fetal proximal femoral chondroepiphysis,” Journal of Biomechanics, vol. 19, no. 8, pp. 597–605, 1986. View at Scopus
  46. D. K. Miller, “Technical note: modelling soft tissue using biphasic theory-a word of caution,” Computer Methods in Biomechanics and Biomedical Engineering, vol. 1, no. 3, pp. 261–263, 1998. View at Publisher · View at Google Scholar
  47. L. P. Li, J. Soulhat, M. D. Buschmann, and A. Shirazi-Adl, “Nonlinear analysis of cartilage in unconfined ramp compression using a fibril reinforced poroelastic model,” Clinical Biomechanics, vol. 14, no. 9, pp. 673–682, 1999. View at Publisher · View at Google Scholar · View at Scopus
  48. J. Soulhat, M. D. Buschmann, and A. Shirazi-Adl, “A fibril-network-reinforced biphasic model of cartilage in unconfined compression,” Journal of Biomechanical Engineering, vol. 121, no. 3, pp. 340–347, 1999. View at Scopus
  49. W. M. Lai, J. S. Hou, and V. C. Mow, “A triphasic theory for the swelling and deformation behaviors of articular cartilage,” Journal of Biomechanical Engineering, vol. 113, no. 3, pp. 245–258, 1991. View at Scopus
  50. G. A. Ateshian, N. O. Chahine, I. M. Basalo, and C. T. Hung, “The correspondence between equilibrium biphasic and triphasic material properties in mixture models of articular cartilage,” Journal of Biomechanics, vol. 37, no. 3, pp. 391–400, 2004. View at Publisher · View at Google Scholar · View at Scopus
  51. W. Y. Gu, W. M. Lai, and V. C. Mow, “A mixture theory for charged-hydrated soft tissues containing multi- electrolytes: passive transport and swelling behaviors,” Journal of Biomechanical Engineering, vol. 120, no. 2, pp. 169–180, 1998. View at Scopus
  52. M. C. Kirby, T. A. Sikoryn, D. W. L. Hukins, and R. M. Aspden, “Structure and mechanical properties of the longitudinal ligaments and ligamentum flavum of the spine,” Journal of Biomedical Engineering, vol. 11, no. 3, pp. 192–196, 1989. View at Scopus
  53. R. J. Minns, P. D. Soden, and D. S. Jackson, “The role of the fibrous components and ground substance in the mechanical properties of biological tissues: a preliminary investigation,” Journal of Biomechanics, vol. 6, no. 2, pp. 153–165, 1973. View at Scopus
  54. Y. C. Fung, “Elasticity of soft tissues in simple elongation,” American Journal of Physiology, vol. 213, no. 6, pp. 1532–1544, 1967.
  55. J. Hildebrandt, H. Fukaya, and C. J. Martin, “Simple uniaxial and uniform biaxial deformation of nearly isotropic incompressible tissues,” Biophysical Journal, vol. 9, no. 6, pp. 781–791, 1969. View at Scopus
  56. T. T. Soong and W. N. Huang, “A stochastic model for biological tissue elasticity in simple elongation,” Journal of Biomechanics, vol. 6, no. 5, pp. 451–458, 1973. View at Scopus
  57. A. Viidik, “A rheological model for uncalcified parallel-fibred collagenous tissue,” Journal of Biomechanics, vol. 1, no. 1, pp. 3–11, 1968. View at Scopus
  58. M. Frisén, M. Mägi, L. Sonnerup, and A. Viidik, “Rheological analysis of soft collagenous tissue. Part I: theoretical considerations,” Journal of Biomechanics, vol. 2, no. 1, pp. 13–20, 1969. View at Scopus
  59. W. F. Decraemer, M. A. Maes, and V. J. Vanhuyse, “An elastic stress-strain relation for soft biological tissues based on a structural model,” Journal of Biomechanics, vol. 13, no. 6, pp. 463–468, 1980. View at Scopus
  60. M. K. Kwan and S. L. Y. Woo, “A structural model to describe the nonlinear stress-strain behavior for parallel-fibered collagenous tissues,” Journal of Biomechanical Engineering, vol. 111, no. 4, pp. 361–363, 1989. View at Scopus
  61. Y. Lanir, “A microstructure model for the rheology of mammalian tendon,” Journal of Biomechanical Engineering, vol. 102, no. 4, pp. 332–339, 1980. View at Scopus
  62. Y. Lanir, “Constitutive equations for fibrous connective tissues,” Journal of Biomechanics, vol. 16, no. 1, pp. 1–12, 1983. View at Scopus
  63. C. Hurschler, B. Loitz-Ramage, and R. Vanderby, “A structurally based stress-stretch relationship for tendon and ligament,” Journal of Biomechanical Engineering, vol. 119, no. 4, pp. 392–399, 1997. View at Scopus
  64. J. A. Weiss, B. N. Maker, and S. Govindjee, “Finite element implementation of incompressible, transversely isotropic hyperelasticity,” Computer Methods in Applied Mechanics and Engineering, vol. 135, no. 1-2, pp. 107–128, 1996. View at Scopus
  65. K. M. Quapp and J. A. Weiss, “Material characterization of human medial collateral ligament,” Journal of Biomechanical Engineering, vol. 120, no. 6, pp. 757–763, 1998. View at Scopus
  66. J. C. Gardiner and J. A. Weiss, “Simple shear testing of parallel-fibered planar soft tissues,” Journal of Biomechanical Engineering, vol. 123, no. 2, pp. 170–175, 2001. View at Publisher · View at Google Scholar · View at Scopus
  67. J. A. Weiss, J. C. Gardiner, and C. Bonifasi-Lista, “Ligament material behavior is nonlinear, viscoelastic and rate-independent under shear loading,” Journal of Biomechanics, vol. 35, no. 7, pp. 943–950, 2002. View at Publisher · View at Google Scholar · View at Scopus
  68. J. C. Gardiner and J. A. Weiss, “Subject-specific finite element analysis of the human medial collateral ligament during valgus knee loading,” Journal of Orthopaedic Research, vol. 21, no. 6, pp. 1098–1106, 2003. View at Publisher · View at Google Scholar · View at Scopus
  69. R. Sanjeevi, “A viscoelastic model for the mechanical properties of biological materials,” Journal of Biomechanics, vol. 15, no. 2, pp. 107–109, 1982. View at Scopus
  70. R. Sanjeevi, N. Somanathan, and D. Ramaswamy, “Viscoelastic model for collagen fibres,” Journal of Biomechanics, vol. 15, no. 3, pp. 181–183, 1982. View at Scopus
  71. W. F. Decraemer, M. A. Maes, V. J. Vanhuyse, and P. Vanpeperstraete, “A non-linear viscoelastic constitutive equation for soft biological tissues, based upon a structural model,” Journal of Biomechanics, vol. 13, no. 7, pp. 559–564, 1980. View at Scopus
  72. Y. C. Fung, Biomechanics: Mechanical Properties of Living Tissues, Springer-Verlag, New York, NY, USA, 1993.
  73. P. H. Dehoff, “On the nonlinear viscoelastic behavior of soft biological tissues,” Journal of Biomechanics, vol. 11, no. 1-2, pp. 35–40, 1978. View at Scopus
  74. D. P. Pioletti, L. R. Rakotomanana, J. F. Benvenuti, and P. F. Leyvraz, “Viscoelastic constitutive law in large deformations: application to human knee ligaments and tendons,” Journal of Biomechanics, vol. 31, no. 8, pp. 753–757, 1998. View at Publisher · View at Google Scholar · View at Scopus
  75. G. A. Johnson, G. A. Livesay, S. L. Y. Woo, and K. R. Rajagopal, “A single integral finite strain viscoelastic model of ligaments and tendons,” Journal of Biomechanical Engineering, vol. 118, no. 2, pp. 221–226, 1996. View at Scopus
  76. Y. C. Fung, “Stress-strain history relations of soft tissues in simple elongation,” in Biomechanics: Its Foundations and Objectives, Prentice-Hall, Englewood Cliffs, NJ, USA, 1972.
  77. T. S. Atkinson, R. C. Haut, and N. J. Altiero, “A poroelastic model that predicts some phenomenological responses of ligaments and tendons,” Journal of Biomechanical Engineering, vol. 119, no. 4, pp. 400–405, 1997. View at Scopus
  78. L. Yin and D. M. Elliott, “A biphasic and transversely isotropic mechanical model for tendon: application to mouse tail fascicles in uniaxial tension,” Journal of Biomechanics, vol. 37, no. 6, pp. 907–916, 2004. View at Publisher · View at Google Scholar · View at Scopus
  79. L. Blankevoort and R. Huiskes, “Ligament-bone interaction in a three-dimensional model of the knee,” Journal of Biomechanical Engineering, vol. 113, no. 3, pp. 263–269, 1991. View at Scopus
  80. M. Z. Bendjaballah, A. Shirazi, and D. J. Zukor, “Biomechanics of the human knee joint in compression: reconstruction, mesh generation and finite element analysis,” The Knee, vol. 2, no. 2, pp. 69–79, 1995. View at Scopus
  81. G. Li, J. Gil, A. Kanamori, and S. L. Y. Woo, “A validated three-dimensional computational model of a human knee joint,” Journal of Biomechanical Engineering, vol. 121, no. 6, pp. 657–662, 1999. View at Scopus
  82. D. L. Butler, M. D. Kay, and D. C. Stouffer, “Comparison of material properties in fascicle-bone units from human patellar tendon and knee ligaments,” Journal of Biomechanics, vol. 19, no. 6, pp. 425–432, 1986. View at Scopus
  83. A. M. Ahmed, D. L. Burke, N. A. Duncan, and K. H. Chan, “Ligament tension pattern in the flexed knee in combined passive anterior translation and axial rotation,” Journal of Orthopaedic Research, vol. 10, no. 6, pp. 854–867, 1992. View at Publisher · View at Google Scholar · View at Scopus
  84. E. Peña, B. Calvo, M. A. Martínez, and M. Doblaré, “A three-dimensional finite element analysis of the combined behavior of ligaments and menisci in the healthy human knee joint,” Journal of Biomechanics, vol. 39, no. 9, pp. 1686–1701, 2006. View at Publisher · View at Google Scholar · View at Scopus
  85. Y. Y. Dhaher, T. H. Kwon, and M. Barry, “The effect of connective tissue material uncertainties on knee joint mechanics under isolated loading conditions,” Journal of Biomechanics, vol. 43, no. 16, pp. 3118–3125, 2010. View at Publisher · View at Google Scholar · View at Scopus
  86. L. P. Li and M. Kazemi, “Fluid pressurization in cartilages and menisci in the normal and repaired human knees,” in Modeling and Simulation in Engineering, C. Alexandru, Ed., pp. 277–298, InTech, New York, NY, USA, 2012.
  87. M. Kazemi, L. P. Li, P. Savard, and M. D. Buschmann, “Creep behavior of the intact and meniscectomy knee joints,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 4, no. 7, pp. 1351–1358, 2011. View at Publisher · View at Google Scholar · View at Scopus
  88. M. Kazemi, L. P. Li, M. D. Buschmann, and P. Savard, “Partial meniscectomy changes fluid pressurization in articular cartilage in human knees,” Journal of Biomechanical Engineering, vol. 134, no. 2, Article ID 021001, 2012. View at Publisher · View at Google Scholar
  89. P. S. Walker and M. J. Erkman, “The role of the menisci in force transmission across the knee,” Clinical Orthopaedics and Related Research, vol. 109, pp. 184–192, 1975. View at Scopus
  90. P. S. Walker and J. V. Hajek, “The load-bearing area in the knee joint,” Journal of Biomechanics, vol. 5, no. 6, pp. 581–589, 1972. View at Scopus
  91. H. Kurosawa, T. Fukubayashi, and H. Nakajima, “Load-bearing mode of the knee joint: physical behavior of the knee joint with or without menisci,” Clinical Orthopaedics and Related Research, no. 149, pp. 283–290, 1980. View at Scopus
  92. D. C. Fithian, M. A. Kelly, and V. C. Mow, “Material properties and structure-function relationships in the menisci,” Clinical Orthopaedics and Related Research, no. 252, pp. 19–31, 1990. View at Scopus
  93. W. R. Krause, M. H. Pope, R. J. Johnson, and D. G. Wilder, “Mechanical changes in the knee after meniscectomy,” Journal of Bone and Joint Surgery A, vol. 58, no. 5, pp. 599–604, 1976. View at Scopus
  94. I. D. McDermott, S. D. Masouros, and A. A. Amis, “Biomechanics of the menisci of the knee,” Current Orthopaedics, vol. 22, no. 3, pp. 193–201, 2008. View at Publisher · View at Google Scholar · View at Scopus
  95. S. Andrews, N. Shrive, and J. Ronsky, “The shocking truth about meniscus,” Journal of Biomechanics, vol. 44, no. 16, pp. 2737–2740, 2011. View at Publisher · View at Google Scholar
  96. R. M. Aspden, Y. E. Yarker, and D. W. L. Hukins, “Collagen orientations in the meniscus of the knee joint,” Journal of Anatomy, vol. 140, no. 3, pp. 371–380, 1985. View at Scopus
  97. T. L. Haut Donahue, M. L. Hull, M. M. Rashid, and C. R. Jacobs, “How the stiffness of meniscal attachments and meniscal material properties affect tibio-femoral contact pressure computed using a validated finite element model of the human knee joint,” Journal of Biomechanics, vol. 36, no. 1, pp. 19–34, 2003. View at Publisher · View at Google Scholar · View at Scopus
  98. J. H. Lai and M. E. Levenston, “Meniscus and cartilage exhibit distinct intra-tissue strain distributions under unconfined compression,” Osteoarthritis and Cartilage, vol. 18, no. 10, pp. 1291–1299, 2010. View at Publisher · View at Google Scholar · View at Scopus
  99. A. A. H. J. Sauren, A. Huson, and R. Y. Schouten, “An axisymmetric finite element analysis of the mechanical function of the meniscus,” International Journal of Sports Medicine, vol. 5, pp. 93–95, 1984. View at Scopus
  100. R. M. Aspden, “A model for the function and failure of the meniscus,” Engineering in Medicine, vol. 14, no. 3, pp. 119–122, 1985. View at Scopus
  101. G. J. M. A. Schreppers, A. A. H. J. Sauren, and A. Huson, “Numerical model of the load transmission in the tibio-femoral contact area,” Proceedings of the Institution of Mechanical Engineers H, vol. 204, no. 1, pp. 53–59, 1990. View at Scopus
  102. J. R. Meakin, N. G. Shrive, C. B. Frank, and D. A. Hart, “Finite element analysis of the meniscus: the influence of geometry and material properties on its behaviour,” Knee, vol. 10, no. 1, pp. 33–41, 2003. View at Publisher · View at Google Scholar · View at Scopus
  103. M. Tissakht and A. M. Ahmed, “Parametric study using different elastic and poroelastic axisymmetric models of the femur-meniscus-tibia unit,” in Winter Annual Meeting of the American Society of Mechanical Engineers, pp. 241–243, November 1992. View at Scopus
  104. R. L. Spilker, P. S. Donzelli, and V. C. Mow, “A transversely isotropic biphasic finite element model of the meniscus,” Journal of Biomechanics, vol. 25, no. 9, pp. 1027–1045, 1992. View at Publisher · View at Google Scholar · View at Scopus
  105. W. Wilson, B. Van Rietbergen, C. C. Van Donkelaar, and R. Huiskes, “Pathways of load-induced cartilage damage causing cartilage degeneration in the knee after meniscectomy,” Journal of Biomechanics, vol. 36, no. 6, pp. 845–851, 2003. View at Publisher · View at Google Scholar · View at Scopus
  106. A. C. Abraham, J. T. Moyer, D. F. Villegas, G. M. Odegard, and T. L. Haut Donahue, “Hyperelastic properties of human meniscal attachments,” Journal of Biomechanics, vol. 44, no. 3, pp. 413–418, 2011. View at Publisher · View at Google Scholar · View at Scopus
  107. J. Wismans, F. Veldpaus, and J. Janssen, “A three-dimensioal mathematical model of the knee-joint,” Journal of Biomechanics, vol. 13, no. 8, pp. 677–686, 1980. View at Scopus
  108. J. Suggs, C. Wang, and G. Li, “The effect of graft stiffness on knee joint biomechanics after ACL reconstruction-a 3D computational simulation,” Clinical Biomechanics, vol. 18, no. 1, pp. 35–43, 2003. View at Publisher · View at Google Scholar · View at Scopus
  109. E. Peña, B. Calvo, M. A. Martínez, D. Palanca, and M. Doblaré, “Finite element analysis of the effect of meniscal tears and meniscectomies on human knee biomechanics,” Clinical Biomechanics, vol. 20, no. 5, pp. 498–507, 2005. View at Publisher · View at Google Scholar · View at Scopus
  110. T. L. H. Donahue, M. L. Hull, M. M. Rashid, and C. R. Jacobs, “A finite element model of the human knee joint for the study of tibio-femoral contact,” Journal of Biomechanical Engineering, vol. 124, no. 3, pp. 273–280, 2002. View at Publisher · View at Google Scholar · View at Scopus
  111. N. Yang, H. Nayeb-Hashemi, and P. K. Canavan, “The combined effect of frontal plane tibiofemoral knee angle and meniscectomy on the cartilage contact stresses and strains,” Annals of Biomedical Engineering, vol. 37, no. 11, pp. 2360–2372, 2009. View at Publisher · View at Google Scholar · View at Scopus
  112. M. E. Mononen, M. T. Mikkola, P. Julkunen et al., “Effect of superficial collagen patterns and fibrillation of femoral articular cartilage on knee joint mechanics-a 3D finite element analysis,” Journal of Biomechanics, vol. 45, no. 3, pp. 579–587, 2012. View at Publisher · View at Google Scholar
  113. R. Shirazi, A. Shirazi-Adl, and M. Hurtig, “Role of cartilage collagen fibrils networks in knee joint biomechanics under compression,” Journal of Biomechanics, vol. 41, no. 16, pp. 3340–3348, 2008. View at Publisher · View at Google Scholar · View at Scopus
  114. A. Jilani, A. Shirazi-Adl, and M. Z. Bendjaballah, “Biomechanics of human tibio-femoral joint in axial rotation,” Knee, vol. 4, no. 4, pp. 203–213, 1997. View at Publisher · View at Google Scholar · View at Scopus
  115. M. Z. Bendjaballah, A. Shirazi-Adl, and D. J. Zukor, “Biomechanical response of the passive human knee joint under anterior-posterior forces,” Clinical Biomechanics, vol. 13, no. 8, pp. 625–633, 1998. View at Publisher · View at Google Scholar · View at Scopus
  116. M. Z. Bendjaballah, A. Shirazi-Adl, and D. J. Zukor, “Finite element analysis of human knee joint in varus-valgus,” Clinical Biomechanics, vol. 12, no. 3, pp. 139–148, 1997. View at Publisher · View at Google Scholar · View at Scopus
  117. R. Crowninshield, M. H. Pope, and R. J. Johnson, “An analytical model of the knee,” Journal of Biomechanics, vol. 9, no. 6, pp. 397–405, 1976. View at Scopus
  118. L. S. Matthews, D. A. Sonstegard, and J. A. Henke, “Load bearing characteristics of the patello-femoral joint,” Acta Orthopaedica Scandinavica, vol. 48, no. 5, pp. 511–516, 1977. View at Scopus
  119. E. S. Grood and M. S. Hefzy, “An analytical technique for modeling knee joint stiffness. Part I: ligamentous forces,” Journal of Biomechanical Engineering, vol. 104, no. 4, pp. 330–337, 1982. View at Scopus
  120. M. S. Hefzy and E. S. Grood, “An analytical technique for modeling knee joint stiffness—part II: ligamentous geometric nonlinearities,” Journal of Biomechanical Engineering, vol. 105, no. 2, pp. 145–153, 1983. View at Scopus
  121. L. Blankevoort, J. H. Kuiper, R. Huiskes, and H. J. Grootenboer, “Articular contact in a three-dimensional model of the knee,” Journal of Biomechanics, vol. 24, no. 11, pp. 1019–1031, 1991. View at Publisher · View at Google Scholar · View at Scopus
  122. S. Hirokawa, “Three-dimensional mathematical model analysis of the patellofemoral joint,” Journal of Biomechanics, vol. 24, no. 8, pp. 659–671, 1991. View at Publisher · View at Google Scholar · View at Scopus
  123. T. M. G. J. van Eijden, E. Kouwenhoven, J. Verburg, and W. A. Weijs, “A mathematical model of the patellofemoral joint,” Journal of Biomechanics, vol. 19, no. 3, pp. 219–229, 1986. View at Scopus
  124. T. P. Andriacchi, R. P. Mikosz, S. J. Hampton, and J. O. Galante, “Model studies of the stiffness characteristics of the human knee joint,” Journal of Biomechanics, vol. 16, no. 1, pp. 23–29, 1983. View at Scopus
  125. S. T Tümer and A. E. Engin, “Three-body segment dynamic model of the human knee,” Journal of Biomechanical Engineering, vol. 115, no. 4, pp. 350–356, 1993. View at Publisher · View at Google Scholar
  126. B. Beynnon, J. Yu, D. Huston et al., “A sagittal plane model of the knee and cruciate ligaments with application of a sensitivity analysis,” Journal of Biomechanical Engineering, vol. 118, no. 2, pp. 227–238, 1996. View at Scopus
  127. M. S. Hefzy and H. Yang, “A three-dimensional anatomical model of the human patello-femoral joint, for the determination of patello-femoral motions and contact characteristics,” Journal of Biomedical Engineering, vol. 15, no. 4, pp. 289–302, 1993. View at Scopus
  128. J. Apkarian, S. Naumann, and B. Cairns, “A three-dimensional kinematic and dynamic model of the lower limb,” Journal of Biomechanics, vol. 22, no. 2, pp. 143–155, 1989. View at Scopus
  129. A. W. Eberhardt, J. L. Lewis, and L. M. Keer, “Contact of layered elastic spheres as a model of joint contact: effect of tangential load and friction,” Journal of Biomechanical Engineering, vol. 113, no. 1, pp. 107–108, 1991. View at Scopus
  130. M. H. Moeinzadeh, A. E. Engin, and N. Akkas, “Two-dimensional dynamic modelling of human knee joint,” Journal of Biomechanics, vol. 16, no. 4, pp. 253–264, 1983. View at Scopus
  131. J. R. Essinger, P. F. Leyvraz, J. H. Heegard, and D. D. Robertson, “A mathematical model for the evaluation of the behaviour during flexion of condylar-type knee prostheses,” Journal of Biomechanics, vol. 22, no. 11-12, pp. 1229–1241, 1989. View at Scopus
  132. E. Abdel-Rahman and M. S. Hefzy, “A two-dimensional dynamic anatomical model of the human knee joint,” Journal of Biomechanical Engineering, vol. 115, no. 4, pp. 357–365, 1993. View at Scopus
  133. T. M. Guess, G. Thiagarajan, M. Kia, and M. Mishra, “A subject specific multibody model of the knee with menisci,” Medical Engineering and Physics, vol. 32, no. 5, pp. 505–515, 2010. View at Publisher · View at Google Scholar · View at Scopus
  134. T. M. Guess, H. Liu, S. Bhashyam, and G. Thiagarajan, “A multibody knee model with discrete cartilage prediction of tibio-femoral contact mechanics,” Computer Methods in Biomechanics and Biomedical Engineering, pp. 1–15, 2011.
  135. B. J. Fregly, T. F. Besier, D. G. Lloyd et al., “Grand challenge competition to predict in vivo knee loads,” Journal of Orthopaedic Research, vol. 30, no. 4, pp. 503–513, 2012. View at Publisher · View at Google Scholar
  136. G. Papaioannou, C. K. Demetropoulos, and Y. H. King, “Predicting the effects of knee focal articular surface injury with a patient-specific finite element model,” Knee, vol. 17, no. 1, pp. 61–68, 2010. View at Publisher · View at Google Scholar · View at Scopus
  137. J. M. Penrose, G. M. Holt, M. Beaugonin, and D. R. Hose, “Development of an accurate three-dimensional finite element knee model,” Computer methods in biomechanics and biomedical engineering, vol. 5, no. 4, pp. 291–300, 2002. View at Scopus
  138. K. B. Gu and L. P. Li, “A human knee joint model considering fluid pressure and fiber orientation in cartilages and menisci,” Medical Engineering and Physics, vol. 33, no. 4, pp. 497–503, 2011. View at Publisher · View at Google Scholar · View at Scopus
  139. M. E. Mononen, P. Julkunen, J. Töyräs, J. S. Jurvelin, I. Kiviranta, and R. K. Korhonen, “Alterations in structure and properties of collagen network of osteoarthritic and repaired cartilage modify knee joint stresses,” Biomechanics and Modeling in Mechanobiology, vol. 10, no. 3, pp. 357–369, 2011. View at Publisher · View at Google Scholar
  140. A. P. del Palomar and M. Doblaré, “An accurate simulation model of anteriorly displaced TMJ discs with and without reduction,” Medical Engineering & Physics, vol. 29, no. 2, pp. 216–226, 2007. View at Publisher · View at Google Scholar
  141. B. Zielinska and T. L. Haut Donahue, “3D finite element model of meniscectomy: changes in joint contact behavior,” Journal of Biomechanical Engineering, vol. 128, no. 1, pp. 115–123, 2006. View at Publisher · View at Google Scholar · View at Scopus
  142. E. Peña, B. Calvo, M. A. Martínez, and M. Doblaré, “Computer simulation of damage on distal femoral articular cartilage after meniscectomies,” Computers in Biology and Medicine, vol. 38, no. 1, pp. 69–81, 2008. View at Publisher · View at Google Scholar
  143. G. Li, O. Lopez, and H. Rubash, “Variability of a three-dimensional finite element model constructed using magnetic resonance images of a knee for joint contact stress analysis,” Journal of Biomechanical Engineering, vol. 123, no. 4, pp. 341–346, 2001. View at Publisher · View at Google Scholar · View at Scopus
  144. R. Chand, E. Haug, and K. Rim, “Stresses in the human knee joint,” Journal of Biomechanics, vol. 9, no. 6, pp. 417–422, 1976. View at Scopus
  145. T. D. Brown, E. L. Radin, R. B. Martin, and D. B. Burr, “Finite element studies of some juxtarticular stress changes due to localized subchondral stiffening,” Journal of Biomechanics, vol. 17, no. 1, pp. 11–24, 1984. View at Scopus
  146. H. Huber-Betzer, T. D. Brown, and C. Mattheck, “Some effects of global joint morphology on local stress aberrations near imprecisely reduced intra-articular fractures,” Journal of Biomechanics, vol. 23, no. 8, pp. 811–822, 1990. View at Publisher · View at Google Scholar · View at Scopus
  147. G. Papaioannou, G. Nianios, C. Mitrogiannis, D. Fyhrie, S. Tashman, and K. H. Yang, “Patient-specific knee joint finite element model validation with high-accuracy kinematics from biplane dynamic Roentgen stereogrammetric analysis,” Journal of Biomechanics, vol. 41, no. 12, pp. 2633–2638, 2008. View at Publisher · View at Google Scholar · View at Scopus
  148. R. Shirazi and A. Shirazi-Adl, “Analysis of partial meniscectomy and ACL reconstruction in knee joint biomechanics under a combined loading,” Clinical Biomechanics, vol. 24, no. 9, pp. 755–761, 2009. View at Publisher · View at Google Scholar · View at Scopus
  149. T. Villa, F. Migliavacca, D. Gastaldi, M. Colombo, and R. Pietrabissa, “Contact stresses and fatigue life in a knee prosthesis: comparison between in vitro measurements and computational simulations,” Journal of Biomechanics, vol. 37, no. 1, pp. 45–53, 2004. View at Publisher · View at Google Scholar · View at Scopus
  150. P. Beillas, G. Papaioannou, S. Tashman, and K. H. Yang, “A new method to investigate in vivo knee behavior using a finite element model of the lower limb,” Journal of Biomechanics, vol. 37, no. 7, pp. 1019–1030, 2004. View at Publisher · View at Google Scholar · View at Scopus
  151. N. H. Yang, H. Nayeb-Hashemi, P. K. Canavan, and A. Vaziri, “Effect of frontal plane tibiofemoral angle on the stress and strain at the knee cartilage during the stance phase of gait,” Journal of Orthopaedic Research, vol. 28, no. 12, pp. 1539–1547, 2010. View at Publisher · View at Google Scholar · View at Scopus
  152. J. Heegaard, P. F. Leyvraz, A. Curnier, L. Rakotomananaa, and R. Huiskes, “The biomechanics of the human patella during passive knee flexion,” Journal of Biomechanics, vol. 28, no. 11, pp. 1265–1279, 1995. View at Publisher · View at Google Scholar · View at Scopus
  153. T. F. Besier, G. E. Gold, G. S. Beaupré, and S. L. Delp, “A modeling framework to estimate patellofemoral joint cartilage stress in vivo,” Medicine and Science in Sports and Exercise, vol. 37, no. 11, pp. 1924–1930, 2005. View at Publisher · View at Google Scholar · View at Scopus
  154. T. F. Besier, G. E. Gold, S. L. Delp, M. Fredericson, and G. S. Beaupré, “The influence of femoral internal and external rotation on cartilage stresses within the patellofemoral joint,” Journal of Orthopaedic Research, vol. 26, no. 12, pp. 1627–1635, 2008. View at Publisher · View at Google Scholar · View at Scopus
  155. S. Farrokhi, J. H. Keyak, and C. M. Powers, “Individuals with patellofemoral pain exhibit greater patellofemoral joint stress: a finite element analysis study,” Osteoarthritis and Cartilage, vol. 19, no. 3, pp. 287–294, 2011. View at Publisher · View at Google Scholar · View at Scopus
  156. C. K. Fitzpatrick, M. A. Baldwin, and P. J. Rullkoetter, “Computationally efficient finite element evaluation of natural patellofemoral mechanics,” Journal of Biomechanical Engineering, vol. 132, no. 12, Article ID 121013, 2010. View at Publisher · View at Google Scholar · View at Scopus
  157. D. Périé and M. C. Hobatho, “In vivo determination of contact areas and pressure of the femorotibial joint using non-linear finite element analysis,” Clinical Biomechanics, vol. 13, no. 6, pp. 394–402, 1998. View at Publisher · View at Google Scholar · View at Scopus
  158. K. E. Moglo and A. Shirazi-Adl, “Cruciate coupling and screw-home mechanism in passive knee joint during extension-flexion,” Journal of Biomechanics, vol. 38, no. 5, pp. 1075–1083, 2005. View at Publisher · View at Google Scholar · View at Scopus
  159. W. Mesfar and A. Shirazi-Adl, “Biomechanics of the knee joint in flexion under various quadriceps forces,” Knee, vol. 12, no. 6, pp. 424–434, 2005. View at Publisher · View at Google Scholar · View at Scopus
  160. Z. Hao, D. Jin, Y. Zhang, and J. Zhang, “A finite element 3D model of in vivo human knee joint based on MRI for the tibiofemoral joint contact analysis,” in Proceedings of the 1st international conference on Digital human modeling, pp. 616–622, Beijing, China, 2007.
  161. S. C. Sibole and A. Erdemir, “Chondrocyte deformations as a function of tibiofemoral joint loading predicted by a generalized high-throughput pipeline of multi-scale simulations,” PLoS One, vol. 7, no. 5, Article ID e37538, 2012. View at Publisher · View at Google Scholar
  162. J. P. Halloran, S. Sibole, C. C. van Donkelaar et al., “Multiscale mechanics of articular cartilage: potentials and challenges of coupling musculoskeletal, joint, and microscale computational models,” Annals of Biomedical Engineering, vol. 40, no. 11, pp. 2456–2474, 2012. View at Publisher · View at Google Scholar
  163. G. A. Ateshian, S. Maas, and J. A. Weiss, “Finite element algorithm for frictionless contact of porous permeable media under finite deformation and sliding,” Journal of Biomechanical Engineering, vol. 132, no. 6, 2010. View at Publisher · View at Google Scholar · View at Scopus
  164. S. M. Adeeb, E. Y. Sayed Ahmed, J. Matyas, D. A. Hart, C. B. Frank, and N. G. Shrive, “Congruency effects on load bearing in diarthrodial joints,” Computer Methods in Biomechanics and Biomedical Engineering, vol. 7, no. 3, pp. 147–157, 2004. View at Scopus
  165. ASME, Guide For Verification and Validation in Computational Solid Mechanics, Transmitted by L.E. Schwer, Chair PTC60/V&V 10, American Society of Mechanical Engineers, New York, NY, USA, 2006.
  166. I. Babuska and J. T. Oden, “Verification and validation in computational engineering and science: basic concepts,” Computer Methods in Applied Mechanics and Engineering, vol. 193, no. 36–38, pp. 4057–4066, 2004. View at Publisher · View at Google Scholar · View at Scopus
  167. A. E. Anderson, B. J. Ellis, and J. A. Weiss, “Verification, validation and sensitivity studies in computational biomechanics,” Computer Methods in Biomechanics and Biomedical Engineering, vol. 10, no. 3, pp. 171–184, 2007. View at Publisher · View at Google Scholar · View at Scopus
  168. A. Erdemir, T. M. Guess, J. Halloran, S. C. Tadepalli, and T. M. Morrison, “Considerations for reporting finite element analysis studies in biomechanics,” Journal of Biomechanics, vol. 45, no. 4, pp. 625–633, 2012. View at Publisher · View at Google Scholar
  169. H. B. Henninger, S. P. Reese, A. E. Anderson, and J. A. Weiss, “Validation of computational models in biomechanics,” Proceedings of the Institution of Mechanical Engineers H, vol. 224, no. 7, pp. 801–812, 2010. View at Publisher · View at Google Scholar
  170. J. Z. Wu, W. Herzog, and M. Epstein, “Evaluation of the finite element software ABAQUS for biomechanical modelling of biphasic tissues,” Journal of Biomechanics, vol. 31, no. 2, pp. 165–169, 1997. View at Publisher · View at Google Scholar · View at Scopus
  171. A. F. van der Voet, Finite element modelling of load transfer through articular cartilage [Ph.D. thesis], University of Calgary, Alberta, Canada, 1992.
  172. P. J. Prendergast, W. D. Van Driel, and J. H. Kuiper, “A comparison of finite element codes for the solution of biphasic poroelastic problems,” Proceedings of the Institution of Mechanical Engineers H, vol. 210, no. 2, pp. 131–136, 1996. View at Scopus
  173. D. K. Smith, T. H. Berquist, K. N. An, R. A. Robb, and E. Y. S. Chao, “Validation of three-dimensional reconstructions of knee anatomy: CT versus MR imaging,” Journal of Computer Assisted Tomography, vol. 13, no. 2, pp. 294–301, 1989. View at Scopus
  174. A. E. Anderson, B. J. Ellis, S. A. Maas, C. L. Peters, and J. A. Weiss, “Validation of finite element predictions of cartilage contact pressure in the human hip joint,” Journal of Biomechanical Engineering, vol. 130, no. 5, Article ID 051008, 2008. View at Publisher · View at Google Scholar · View at Scopus
  175. A. M. Ahmed and D. L. Burke, “In-vitro measurement of static pressure distribution in synovial joints-Part I: tibial surface of the knee,” Journal of Biomechanical Engineering, vol. 105, no. 3, pp. 216–225, 1983. View at Scopus
  176. G. A. Ateshian, “A stereophotogrammetric method for determining in situ contact areas in diarthrodial joints, and a comparison with other methods,” Journal of Biomechanics, vol. 27, no. 1, pp. 111–124, 1994. View at Publisher · View at Google Scholar · View at Scopus
  177. J. A. Szivek, L. Cutignola, and R. G. Volz, “Tibiofemoral contact stress and stress distribution evaluation of total knee arthroplasties,” Journal of Arthroplasty, vol. 10, no. 4, pp. 480–491, 1995. View at Publisher · View at Google Scholar · View at Scopus
  178. M. L. Harris, P. Morberg, W. J. M. Bruce, and W. R. Walsh, “An improved method for measuring tibiofemoral contact areas in total knee arthroplasty: a comparison of K-scan sensor and Fuji film,” Journal of Biomechanics, vol. 32, no. 9, pp. 951–958, 1999. View at Publisher · View at Google Scholar · View at Scopus
  179. P. S. Walker and J. V. Hajek, “The load-bearing area in the knee joint,” Journal of Biomechanics, vol. 5, no. 6, pp. 581–IN3, 1972. View at Scopus
  180. T. Fukubayashi and H. Kurosawa, “The contact area and pressure distribution pattern of the knee. A study of normal and osteoarthrotic knee joints,” Acta Orthopaedica Scandinavica, vol. 51, no. 6, pp. 871–879, 1980. View at Scopus
  181. G. Yildirim, P. S. Walker, J. Sussman-Fort, G. Aggarwal, B. White, and G. R. Klein, “The contact locations in the knee during high flexion,” Knee, vol. 14, no. 5, pp. 379–384, 2007. View at Publisher · View at Google Scholar · View at Scopus
  182. T. D. Brown and D. T. Shaw, “In vitro contact stress distribution on the femoral condyles,” Journal of Orthopaedic Research, vol. 2, no. 2, pp. 190–199, 1984. View at Scopus
  183. C. Herberhold, S. Faber, T. Stammberger et al., “In situ measurement of articular cartilage deformation in intact femoropatellar joints under static loading,” Journal of Biomechanics, vol. 32, no. 12, pp. 1287–1295, 1999. View at Publisher · View at Google Scholar · View at Scopus
  184. F. Liu, M. Kozanek, A. Hosseini et al., “In vivo tibiofemoral cartilage deformation during the stance phase of gait,” Journal of biomechanics, vol. 43, no. 4, pp. 658–665, 2010. View at Scopus
  185. G. Li, L. E. DeFrate, E. P. Sang, T. J. Gill, and H. E. Rubash, “In vivo articular cartilage contact kinematics of the knee: an investigation using dual-orthogonal fluoroscopy and magnetic resonance image-based computer models,” American Journal of Sports Medicine, vol. 33, no. 1, pp. 102–107, 2005. View at Publisher · View at Google Scholar · View at Scopus
  186. D. D. Anderson, T. D. Brown, and E. L. Radin, “The influence of basal cartilage calcification on dynamic juxtaarticular stress transmission,” Clinical Orthopaedics and Related Research, no. 286, pp. 298–307, 1993. View at Scopus
  187. C. Zannoni, R. Mantovani, and M. Viceconti, “Material properties assignment to finite element models of bone structures: a new method,” Medical Engineering and Physics, vol. 20, no. 10, pp. 735–740, 1999. View at Publisher · View at Google Scholar · View at Scopus
  188. L. Blankevoort and R. Huiskes, “Validation of a three-dimensional model of the knee,” Journal of Biomechanics, vol. 29, no. 7, pp. 955–961, 1996. View at Publisher · View at Google Scholar · View at Scopus
  189. J. Yao, J. Snibbe, M. Maloney, and A. L. Lerner, “Stresses and strains in the medial meniscus of an ACL deficient knee under anterior loading: a finite element analysis with image-based experipmental validation,” Journal of Biomechanical Engineering, vol. 128, no. 1, pp. 135–141, 2006. View at Publisher · View at Google Scholar · View at Scopus
  190. G. Li, J. Suggs, and T. Gill, “The effect of anterior cruciate ligament injury on knee joint function under a simulated muscle load: a three-dimensional computational simulation,” Annals of Biomedical Engineering, vol. 30, no. 5, pp. 713–720, 2002. View at Publisher · View at Google Scholar · View at Scopus
  191. K. E. Moglo and A. Shirazi-Adl, “Biomechanics of passive knee joint in drawer: load transmission in intact and ACL-deficient joints,” Knee, vol. 10, no. 3, pp. 265–276, 2003. View at Publisher · View at Google Scholar · View at Scopus
  192. E. Peña, M. A. Martínez, B. Calvo, D. Palanca, and M. Doblaré, “A finite element simulation of the effect of graft stiffness and graft tensioning in ACL reconstruction,” Clinical Biomechanics, vol. 20, no. 6, pp. 636–644, 2005. View at Publisher · View at Google Scholar · View at Scopus
  193. N. A. Ramaniraka, A. Terrier, N. Theumann, and O. Siegrist, “Effects of the posterior cruciate ligament reconstruction on the biomechanics of the knee joint: a finite element analysis,” Clinical Biomechanics, vol. 20, no. 4, pp. 434–442, 2005. View at Publisher · View at Google Scholar · View at Scopus
  194. N. A. Ramaniraka, P. Saunier, O. Siegrist, and D. P. Pioletti, “Biomechanical evaluation of intra-articular and extra-articular procedures in anterior cruciate ligament reconstruction: a finite element analysis,” Clinical Biomechanics, vol. 22, no. 3, pp. 336–343, 2007. View at Publisher · View at Google Scholar · View at Scopus
  195. E. Peña, B. Calvo, M. A. Martinez, D. Palanca, and M. Doblaré, “Why lateral meniscectomy is more dangerous than medial meniscectomy. A finite element study,” Journal of Orthopaedic Research, vol. 24, no. 5, pp. 1001–1010, 2006. View at Publisher · View at Google Scholar · View at Scopus
  196. N. A. Netravali, S. Koo, N. J. Giori, and T. P. Andriacchi, “The effect of kinematic and kinetic changes on meniscal strains during gait,” Journal of Biomechanical Engineering, vol. 133, no. 1, p. 011006, 2011. View at Scopus
  197. T. M. Griffin and F. Guilak, “The role of mechanical loading in the onset and progression of osteoarthritis,” Exercise and Sport Sciences Reviews, vol. 33, no. 4, pp. 195–200, 2005. View at Publisher · View at Google Scholar · View at Scopus
  198. R. Shirazi and A. Shirazi-Adl, “Computational biomechanics of articular cartilage of human knee joint: effect of osteochondral defects,” Journal of Biomechanics, vol. 42, no. 15, pp. 2458–2465, 2009. View at Publisher · View at Google Scholar · View at Scopus
  199. Y. F. Dong, G. H. Hu, L. L. Zhang, Y. Hu, Y. H. Dong, and Q. R. Xu, “Accurate 3D reconstruction of subject-specific knee finite element model to simulate the articular cartilage defects,” Journal of Shanghai Jiaotong University, vol. 16, no. 5, pp. 620–627, 2011. View at Publisher · View at Google Scholar
  200. E. Peña, B. Calvo, M. A. Martínez, and M. Doblaré, “Effect of the size and location of osteochondral defects in degenerative arthritis. A finite element simulation,” Computers in Biology and Medicine, vol. 37, no. 3, pp. 376–387, 2007. View at Publisher · View at Google Scholar
  201. A. C. Godest, M. Beaugonin, E. Haug, M. Taylor, and P. J. Gregson, “Simulation of a knee joint replacement during a gait cycle using explicit finite element analysis,” Journal of Biomechanics, vol. 35, no. 2, pp. 267–275, 2002. View at Publisher · View at Google Scholar · View at Scopus
  202. J. Daněk, J. Nedoma, I. Hlaváček, P. Vavřík, and F. Denk, “Numerical modelling of the weight-bearing total knee joint replacement and usage in practice,” Mathematics and Computers in Simulation, vol. 76, no. 1–3, pp. 49–56, 2007. View at Publisher · View at Google Scholar · View at Scopus
  203. A. Sharma, R. D. Komistek, C. S. Ranawat, D. A. Dennis, and M. R. Mahfouz, “In vivo contact pressures in total knee arthroplasty,” Journal of Arthroplasty, vol. 22, no. 3, pp. 404–416, 2007. View at Publisher · View at Google Scholar · View at Scopus
  204. A. G. Au, V. James Raso, A. B. Liggins, and A. Amirfazli, “Contribution of loading conditions and material properties to stress shielding near the tibial component of total knee replacements,” Journal of Biomechanics, vol. 40, no. 6, pp. 1410–1416, 2007. View at Publisher · View at Google Scholar · View at Scopus
  205. H. Bougherara, Z. Mahboob, M. Miric, and M. Youssef, “Finite element investigation of hybrid and conventional knee implants,” International Journal of Engineering, vol. 3, no. 3, pp. 257–266, 2009.
  206. M. A. Baldwin, C. W. Clary, C. K. Fitzpatrick, J. S. Deacy, L. P. Maletsky, and P. J. Rullkoetter, “Dynamic finite element knee simulation for evaluation of knee replacement mechanics,” Journal of Biomechanics, vol. 45, no. 3, pp. 474–483, 2012. View at Publisher · View at Google Scholar
  207. D. J. van den Heever, C. Scheffer, P. Erasmus, and E. Dillon, “Contact stresses in a patient-specific unicompartmental knee replacement,” Clinical Biomechanics, vol. 26, no. 2, pp. 159–166, 2011. View at Publisher · View at Google Scholar
  208. J. K. Otto, J. J. Callaghan, and T. D. Brown, “The Coventry award paper: mobility and contact mechanics of a rotating platform total knee replacement,” Clinical Orthopaedics and Related Research, no. 392, pp. 24–37, 2001. View at Scopus
  209. Y. Guo, X. Zhang, and W. Chen, “Three-dimensional finite element simulation of total knee joint in gait cycle,” Acta Mechanica Solida Sinica, vol. 22, no. 4, pp. 347–351, 2009. View at Publisher · View at Google Scholar · View at Scopus
  210. N. H. Yang, P. K. Canavan, and H. Nayeb-Hashemi, “The effect of the frontal plane tibiofemoral angle and varus knee moment on the contact stress and strain at the knee cartilage,” Journal of Applied Biomechanics, vol. 26, no. 4, pp. 432–443, 2010. View at Scopus
  211. N. H. Yang, P. K. Canavan, H. Nayeb-Hashemi, B. Najafi, and A. Vaziri, “Protocol for constructing subject-specific biomechanical models of knee joint,” Computer Methods in Biomechanics and Biomedical Engineering, vol. 13, no. 5, pp. 589–603, 2010. View at Publisher · View at Google Scholar · View at Scopus
  212. D. Siu, J. Rudan, H. W. Wevers, and P. Griffiths, “Femoral articular shape and geometry: a three-dimensional computerized analysis of the knee,” Journal of Arthroplasty, vol. 11, no. 2, pp. 166–173, 1996. View at Scopus
  213. S. J. Ferguson, J. T. Bryant, R. Ganz, and K. Ito, “The influence of the acetabular labrum on hip joint cartilage consolidation: a poroelastic finite element model,” Journal of Biomechanics, vol. 33, no. 8, pp. 953–960, 2000. View at Publisher · View at Google Scholar · View at Scopus
  214. P. Büchler, N. A. Ramaniraka, L. R. Rakotomanana, J. P. Iannotti, and A. Farron, “A finite element model of the shoulder: application to the comparison of normal and osteoarthritic joints,” Clinical Biomechanics, vol. 17, no. 9-10, pp. 630–639, 2002. View at Publisher · View at Google Scholar · View at Scopus
  215. M. Wawro and M. Fathi-Torbaghan, “A parallel framework for the FE-based simulation of knee joint motion,” IEEE Transactions on Biomedical Engineering, vol. 51, no. 8, pp. 1490–1494, 2004. View at Publisher · View at Google Scholar · View at Scopus
  216. S. K. Han, S. Federico, M. Epstein, and W. Herzog, “An articular cartilage contact model based on real surface geometry,” Journal of Biomechanics, vol. 38, no. 1, pp. 179–184, 2005. View at Publisher · View at Google Scholar · View at Scopus
  217. K. B. Gu and L. P. Li, “Mechanics of collagen fiber network and fluid pressurization in articular cartilage of knee joint,” in Transactions of the 56th Annual Meeting of Orthopaedic Research Society, vol. 35, p. 911, 2010.
  218. M. A. Soltz and G. A. Ateshian, “Interstitial fluid pressurization during confined compression cyclical loading of articular cartilage,” Annals of Biomedical Engineering, vol. 28, no. 2, pp. 150–159, 2000. View at Scopus
  219. J. K. Suh, Z. Li, and S. L. Y. Woo, “Dynamic behavior of a biphasic cartilage model under cyclic compressive loading,” Journal of Biomechanics, vol. 28, no. 4, pp. 357–364, 1995. View at Publisher · View at Google Scholar · View at Scopus
  220. M. D. Warner, W. R. Taylor, and S. E. Clift, “Cyclic loading moves the peak stress to the cartilage surface in a biphasic model with isotropic solid phase properties,” Medical Engineering and Physics, vol. 26, no. 3, pp. 247–249, 2004. View at Publisher · View at Google Scholar · View at Scopus
  221. S. A. Maas, B. J. Ellis, G. A. Ateshian, and J. A. Weiss, “FEBio: finite elements for biomechanics,” Journal of Biomechanical Engineering, vol. 134, no. 1, Article ID 011005, 2012. View at Publisher · View at Google Scholar
  222. N. D. Broom and D. B. Myers, “A study of the structural response of wet hyaline cartilage to various loading situations,” Connective Tissue Research, vol. 7, no. 4, pp. 227–237, 1980. View at Scopus
  223. J. M. Rosvold, S. P. Darcy, R. C. Peterson et al., “Technical issues in using robots to reproduce joint specific gait,” Journal of Biomechanical Engineering, vol. 133, no. 5, Article ID 054501, 2011. View at Publisher · View at Google Scholar
  224. L. D. Noble, R. W. Colbrunn, D. G. Lee, A. J. Van Den Bogert, and B. L. Davis, “Design and validation of a general purpose robotic testing system for musculoskeletal applications,” Journal of Biomechanical Engineering, vol. 132, no. 2, p. 025001, 2010. View at Publisher · View at Google Scholar · View at Scopus
  225. S. L. Y. Woo and M. B. Fisher, “Evaluation of knee stability with use of a robotic system,” Journal of Bone and Joint Surgery A, vol. 91, supplement 1, pp. 78–84, 2009. View at Publisher · View at Google Scholar · View at Scopus
  226. L. P. Li and W. Herzog, “Strain-rate dependence of cartilage stiffness in unconfined compression: the role of fibril reinforcement versus tissue volume change in fluid pressurization,” Journal of Biomechanics, vol. 37, no. 3, pp. 375–382, 2004. View at Publisher · View at Google Scholar · View at Scopus