About this Journal Submit a Manuscript Table of Contents
Cardiovascular Psychiatry and Neurology
Volume 2011 (2011), Article ID 169580, 7 pages
http://dx.doi.org/10.1155/2011/169580
Research Article

A Novel Algorithm for the Assessment of Blood-Brain Barrier Permeability Suggests That Brain Topical Application of Endothelin-1 Does Not Cause Early Opening of the Barrier in Rats

D. Jorks,1,2,3 D. Milakara,1,2,4 M. Alam,5 E. J. Kang,1,6 S. Major,1,2,6 A. Friedman,7 and J. P. Dreier1,2,3,6

1Department of Experimental Neurology, Charité University Medicine Berlin, 10098 Berlin, Germany
2Center for Stroke Research Berlin, Charité University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
3Bernstein Center for Computational Neuroscience Berlin, 10115 Berlin, Germany
4Department of Neuroradiology, Charité University Medicine Berlin, 10098 Berlin, Germany
5Department of Neurosurgery, Hannover Medical School, 30625 Hannover, Germany
6Department of Neurology, Charité University Medicine Berlin, 10098 Berlin, Germany
7Departments of Physiology, Neurosurgery, and Biomedical Engineering, Ben-Gurion University of the Negev, Beersheva 84105, Israel

Received 30 October 2010; Accepted 27 January 2011

Academic Editor: Daniela Kaufer

Copyright © 2011 D. Jorks et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Asahi, K. Asahi, J.-C. Jung, G. J. Del Zoppo, M. E. Fini, and E. H. Lo, “Role for matrix metalloproteinase 9 after focal cerebral ischemia: effects of gene knockout and enzyme inhibition with BB-94,” Journal of Cerebral Blood Flow and Metabolism, vol. 20, no. 12, pp. 1681–1689, 2000.
  2. M. Asahi, T. Sumii, M. E. Fini, S. Itohara, and E. H. Lo, “Matrix metalloproteinase 2 gene knockout has no effect on acute brain injury after focal ischemia,” NeuroReport, vol. 12, no. 13, pp. 3003–3007, 2001.
  3. J. Klohs, J. Steinbrink, R. Bourayou et al., “Near-infrared fluorescence imaging with fluorescently labeled albumin: a novel method for non-invasive optical imaging of blood-brain barrier impairment after focal cerebral ischemia in mice,” Journal of Neuroscience Methods, vol. 180, no. 1, pp. 126–132, 2009. View at Publisher · View at Google Scholar
  4. Y. Gursoy-Ozdemir, J. Qiu, N. Matsuoka et al., “Cortical spreading depression activates and upregulates MMP-9,” Journal of Clinical Investigation, vol. 113, no. 10, pp. 1447–1455, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. E. Seiffert, J. P. Dreier, S. Ivens et al., “Lasting blood-brain barrier disruption induces epileptic focus in the rat somatosensory cortex,” Journal of Neuroscience, vol. 24, no. 36, pp. 7829–7836, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. A. I. Oliveira-Ferreira, D. Milakara, M. Alam et al., “Experimental and preliminary clinical evidence of an ischemic zone with prolonged negative DC shifts surrounded by a normally perfused tissue belt with persistent electrocorticographic depression,” Journal of Cerebral Blood Flow and Metabolism, vol. 30, no. 8, pp. 1504–1519, 2010. View at Publisher · View at Google Scholar
  7. J. P. Dreier, “The role of spreading depression, spreading depolarization and spreading ischemia in neurological disease,” Nature Medicine. In press.
  8. J. P. Dreier, J. Kleeberg, M. Alam et al., “Endothelin-1-induced spreading depression in rats is associated with a microarea of selective neuronal necrosis,” Experimental Biology and Medicine, vol. 232, no. 2, pp. 204–213, 2007. View at Scopus
  9. U. Lindauer, A. Villringer, and U. Dirnagl, “Characterization of CBF response to somatosensory stimulation: model and influence of anesthetics,” American Journal of Physiology, vol. 264, no. 4, part 2, pp. H1223–H1228, 1993. View at Scopus
  10. J. P. Dreier, J. Kleeberg, G. Petzold et al., “Endothelin-1 potently induces Leão's cortical spreading depression in vivo in the rat: a model for an endothelial trigger of migrainous aura?” Brain, vol. 125, no. 1, pp. 102–112, 2002. View at Scopus
  11. D. Jorks, S. Major, A. I. Oliveira-Ferreira, J. Kleeberg, and J. P. Dreier, “Endothelin-1(1-31) induces spreading depolarization in rats,” Acta Neurochirurgica Supplement, vol. 110, pp. 111–117, 2011.
  12. P. Ehrlich, Das Sauerstoff-Bedürfnis des Organismus Eine Farbenanalytische Studie, Hirschwald, Berlin, Germany, 1885.
  13. S. Katayama, H. Shionoya, and S. Ohtake, “A new method for extraction of extravasated dye in the skin and the influence of fasting stress on passive cutaneous anaphylaxis in guinea pigs and rats,” Microbiology and Immunology, vol. 22, no. 2, pp. 89–101, 1978. View at Scopus
  14. O. Tomkins, O. Friedman, S. Ivens et al., “Blood-brain barrier disruption results in delayed functional and structural alterations in the rat neocortex,” Neurobiology of Disease, vol. 25, no. 2, pp. 367–377, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. N. Hjort, O. Wu, M. Ashkanian et al., “MRI detection of early blood-brain barrier disruption: parenchymal enhancement predicts focal hemorrhagic transformation after thrombolysis,” Stroke, vol. 39, no. 3, pp. 1025–1028, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. O. Prager, Y. Chassidim, C. Klein, H. Levi, I. Shelef, and A. Friedman, “Dynamic in vivo imaging of cerebral blood flow and blood-brain barrier permeability,” NeuroImage, vol. 49, no. 1, pp. 337–344, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. D. B. Stanimirovic, R. McCarron, N. Bertrand, and M. Spaiz, “Endothelins release Cr from cultured human cerebromicrovascular endothelium,” Biochemical and Biophysical Research Communications, vol. 191, no. 1, pp. 1–8, 1993. View at Publisher · View at Google Scholar · View at Scopus
  18. I. Narushima, T. Kita, K. Kubo et al., “Contribution of endothelin-1 to disruption of blood-brain barrier permeability in dogs,” Naunyn-Schmiedeberg's Archives of Pharmacology, vol. 360, no. 6, pp. 639–645, 1999. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. Matsuo, S. I. Mihara, M. Ninomiya, and M. Fujimoto, “Protective effect of endothelin type A receptor antagonist on brain edema and injury after transient middle cerebral artery occlusion in rats,” Stroke, vol. 32, no. 9, pp. 2143–2148, 2001. View at Scopus
  20. A. Y. Jin, U. I. Tuor, D. Rushforth et al., “Reduced blood brain barrier breakdown in P-selectin deficient mice following transient ischemic stroke: a future therapeutic target for treatment of stroke,” BMC Neuroscience, vol. 11, article 12, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. R. Jin, G. Yang, and G. Li, “Molecular insights and therapeutic targets for blood-brain barrier disruption in ischemic stroke: critical role of matrix metalloproteinases and tissue-type plasminogen activator,” Neurobiology of Disease, vol. 38, no. 3, pp. 376–385, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. T. Kuroiwa, P. Ting, H. Martinez, and I. Klatzo, “The biphasic opening of the blood-brain barrier to proteins following temporary middle cerebral artery occlusion,” Acta Neuropathologica, vol. 68, no. 2, pp. 122–129, 1985. View at Scopus
  23. R. Pluta, A. S. Lossinsky, H. M. Wisnieuwski, and M. J. Mossakowski, “Early blood-brain barrier changes in the rat following transient complete cerebral ischemia induced by cardiac arrest,” Brain Research, vol. 633, no. 1-2, pp. 41–52, 1994. View at Publisher · View at Google Scholar · View at Scopus
  24. L. Belayev, R. Busto, W. Zhao, and M. D. Ginsberg, “Quantitative evaluation of blood-brain barrier permeability following middle cerebral artery occlusion in rats,” Brain Research, vol. 739, no. 1-2, pp. 88–96, 1996. View at Publisher · View at Google Scholar · View at Scopus