About this Journal Submit a Manuscript Table of Contents
Cardiovascular Psychiatry and Neurology
Volume 2012 (2012), Article ID 120540, 9 pages
http://dx.doi.org/10.1155/2012/120540
Research Article

Elevated Serum C-Reactive Protein Relates to Increased Cerebral Myoinositol Levels in Middle-Aged Adults

1Department of Psychology, The University of Texas at Austin, Austin, TX 78722, USA
2Imaging Research Center, The University of Texas at Austin, Austin, TX 78759, USA
3Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX 78712, USA

Received 31 July 2011; Revised 4 January 2012; Accepted 12 January 2012

Academic Editor: Janusz K. Rybakowski

Copyright © 2012 Danielle E. Eagan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Schmidt, H. Schmidt, J. D. Curb, K. Masaki, L. R. White, and L. J. Launer, “Early inflammation and dementia: a 25-year follow-up of the Honolulu-Asia Aging Study,” Annals of Neurology, vol. 52, no. 2, pp. 168–174, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. K. Yaffe, A. Kanaya, K. Lindquist et al., “The metabolic syndrome, inflammation, and risk of cognitive decline,” JAMA, vol. 292, no. 18, pp. 2237–2242, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. G. Ravaglia, P. Forti, F. Maioli et al., “Blood inflammatory markers and risk of dementia: the Conselice Study of Brain Aging,” Neurobiology of Aging, vol. 28, no. 12, pp. 1810–1820, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. R. S. Tilvis, M. H. Kähönen-Väre, J. Jolkkonen, J. Valvanne, K. H. Pitkala, and T. E. Strandberg, “Predictors of cognitive decline and mortality of aged people over a 10-year period,” Journals of Gerontology—Series A, vol. 59, no. 3, pp. M268–M274, 2004. View at Scopus
  5. M. G. Dik, C. Jonker, H. C. Comijs et al., “Contribution of metabolic syndrome components to cognition in older individuals,” Diabetes Care, vol. 30, no. 10, pp. 2655–2660, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. P. L. McGeer and E. G. McGeer, “NSAIDs and Alzheimer disease: epidemiological, animal model and clinical studies,” Neurobiology of Aging, vol. 28, no. 5, pp. 639–647, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. P. L. McGeer, M. Schulzer, and E. G. McGeer, “Arthritis and anti-inflammatory agents as possible protective factors for Alzheimer's disease: a review of 17 epidemiologic studies,” Neurology, vol. 47, no. 2, pp. 425–432, 1996. View at Scopus
  8. C. A. Szekely, J. C. S. Breitner, A. L. Fitzpatrick et al., “NSAID use and dementia risk in the Cardiovascular Health Study: role of APOE and NSAID type,” Neurology, vol. 70, no. 1, pp. 17–24, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. J. R. Conde and W. J. Streit, “Microglia in the aging brain,” Journal of Neuropathology and Experimental Neurology, vol. 65, no. 3, pp. 199–203, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. D. C. W. Lau, B. Dhillon, H. Yan, P. E. Szmitko, and S. Verma, “Adipokines: molecular links between obesity and atheroslcerosis,” American Journal of Physiology, vol. 288, no. 5, pp. H2031–H2041, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. D. M. Bonifati and U. Kishore, “Role of complement in neurodegeneration and neuroinflammation,” Molecular Immunology, vol. 44, no. 5, pp. 999–1010, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Urenjak, S. R. Williams, D. G. Gadian, and M. Noble, “Specific expression of N-acetylaspartate in neurons, oligodendrocyte-type- 2 astrocyte progenitors, and immature oligodendrocytes in vitro,” Journal of Neurochemistry, vol. 59, no. 1, pp. 55–61, 1992. View at Publisher · View at Google Scholar · View at Scopus
  13. E. R. Danielsen and B. Ross, Magnetic Resonance Spectroscopy Diagnosis of Neurological Diseases, Marcel Dekker, New York, NY, USA, 1999.
  14. R. E. Jung, R. A. Yeo, S. J. Chiulli, W. L. Sibbitt, and W. M. Brooks, “Myths of neuropsychology: intelligence, neurometabolism, and cognitive ability,” Clinical Neuropsychologist, vol. 14, no. 4, pp. 535–545, 2000. View at Scopus
  15. W. M. Brooks, S. D. Friedman, and C. Gasparovic, “Magnetic resonance spectroscopy in traumatic brain injury,” The Journal of Head Trauma Rehabilitation, vol. 16, no. 2, pp. 149–164, 2001. View at Scopus
  16. C. E. Clarke and M. Lowry, “Systematic review of proton magnetic resonance spectroscopy of the striatum in parkinsonian syndromes,” European Journal of Neurology, vol. 8, no. 6, pp. 573–577, 2001. View at Publisher · View at Google Scholar
  17. A. Brand, C. Richter-Landsberg, and D. Leibfritz, “Multinuclear NMR studies on the energy metabolism of glial and neuronal cells,” Developmental Neuroscience, vol. 15, no. 3–5, pp. 289–298, 1993. View at Scopus
  18. W. Huang, G. E. Alexander, E. M. Daly et al., “High brain myo-inositol levels in the predementia phase of Alzheimer's disease in adults with Down's syndrome: a 1H MRS study,” American Journal of Psychiatry, vol. 156, no. 12, pp. 1879–1886, 1999. View at Scopus
  19. S. Chantal, M. Labelle, R. W. Bouchard, C. M. J. Braun, and Y. Boulanger, “Correlation of regional proton magnetic resonance spectroscopic metabolic changes with cognitive deficits in mild Alzheimer disease,” Archives of Neurology, vol. 59, no. 6, pp. 955–962, 2002. View at Scopus
  20. C. C. Cloak, L. Chang, and T. Ernst, “Increased frontal white matter diffusion is associated with glial metabolites and psychomotor slowing in HIV,” Journal of Neuroimmunology, vol. 157, no. 1-2, pp. 147–152, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. K. T. M. Fernando, M. A. McLean, D. T. Chard et al., “Elevated white matter myo-inositol in clinically isolated syndromes suggestive of multiple sclerosis,” Brain, vol. 127, no. 6, pp. 1361–1369, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. K. Kantarci, C. R. Jack, Y. C. Xu et al., “Regional metabolic patterns in mild cognitive impairment and Alzheimer's disease: a 1H MRS study,” Neurology, vol. 55, no. 2, pp. 210–217, 2000. View at Scopus
  23. D. Wechsler, Wechsler Abbreviated Scale of Intelligence Manual, Harcourt Assessment Company, San Antonio, Tex, USA, 1999.
  24. P. M. Ridker, “C-Reactive protein and the prediction of cardiovascular events among those at intermediate risk—moving an inflammatory hypothesis toward consensus,” Journal of the American College of Cardiology, vol. 49, no. 21, pp. 2129–2138, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. K. Yaffe, K. Lindquist, Penninx et al., “Inflammatory markers and cognition in well-functioning African-American and white elders,” Neurology, vol. 61, no. 1, pp. 76–80, 2003. View at Scopus
  26. R. A. Whitmer, S. Sidney, J. Selby, S. Claiborne Johnston, and K. Yaffe, “Midlife cardiovascular risk factors and risk of dementia in late life,” Neurology, vol. 64, no. 2, pp. 277–281, 2005. View at Scopus
  27. T. A. Pearson, G. A. Mensah, R. W. Alexander et al., “Markers of inflammation and cardiovascular disease: application to clinical and public health practice: a statement for healthcare professionals from the centers for disease control and prevention and the American Heart Association,” Circulation, vol. 107, no. 3, pp. 499–511, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. M. D. Lezak, Neuropsychological Assessment, Oxford University Press, New York, NY, USA, 1995.
  29. M. F. Folstein, S. E. Folstein, and P. R. McHugh, “‘Mini mental state’. A practical method for grading the cognitive state of patients for the clinician,” Journal of Psychiatric Research, vol. 12, no. 3, pp. 189–198, 1975. View at Publisher · View at Google Scholar · View at Scopus
  30. J. C. Morris, A. Heyman, R. C. Mohs et al., “The Consortium to Establish a Registry for Alzheimer's Disease (CERAD). Part I. Clinical and neuropsychological assessment of Alzheimer's disease,” Neurology, vol. 39, no. 9, pp. 1159–1165, 1989. View at Scopus
  31. D. C. Delis, J. H. Kramer, E. Kaplan, and B. A. Ober, California Verbal Learning Test (CVLT-II) Manual, Harcourt Assessment Company, San Antonio, Tex, USA, 2000.
  32. D. Wechsler, Manual for the Wechsler Adult Intelligence Scale, The Psychological Corporation, San Antonio, Tex, USA, 3rd edition, 1979.
  33. P. Eslinger, The Iowa Screening Battery for Mental Decline, University of Iowa College of Medicine, Ames, Iowa, USA, 1984.
  34. R. Reitan, “Validity of the Trail Making test as an indicator of organic brain damage,” Perceptual & Motor Skills, vol. 8, pp. 271–276, 1958.
  35. H. Klove and F. M. Forster, “Clinical neuropsychology,” The Medical Clinics of North America, vol. 47, pp. 1647–1658, 1963. View at Scopus
  36. A. T. Beck, R. A. Steer, and G. K. Brown, BDI-II Manual, The Psychological Corporation, Fort Worth, Tex, USA, 1996.
  37. M. Niezel, D. Bernstein, and R. Russel, “Assessment of anxiety and fear,” in Behavioral Assessment: A Practical Handbook, A. S. Bellack and M. Hersen, Eds., Pergamon Press, Oxford, UK, 1998.
  38. S. W. Provencher, “Estimation of metabolite concentrations from localized in vivo proton NMR spectra,” Magnetic Resonance in Medicine, vol. 30, no. 6, pp. 672–679, 1993. View at Publisher · View at Google Scholar · View at Scopus
  39. P. A. Narayana, “Magnetic resonance spectroscopy in the monitoring of multiple sclerosis,” Journal of Neuroimaging, vol. 15, no. 4, supplement, pp. 46S–57S, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. W. A. Kukull, R. Higdon, J. D. Bowen et al., “Dementia and Alzheimer disease incidence: a prospective cohort study,” Archives of Neurology, vol. 59, no. 11, pp. 1737–1746, 2002. View at Publisher · View at Google Scholar · View at Scopus
  41. L. Letenneur, V. Gilleron, D. Commenges, C. Helmer, J. M. Orgogozo, and J. F. Dartigues, “Are sex and educational level independent predictors of dementia and Alzheimer's disease? Incidence data from the PAQUID project,” Journal of Neurology Neurosurgery and Psychiatry, vol. 66, no. 2, pp. 177–183, 1999. View at Scopus
  42. M. J. Engelhart, M. I. Geerlings, J. Meijer et al., “Inflammatory protemI in plasma and the risk of dementia—the Rotterdam Study,” Archives of Neurology, vol. 61, no. 5, pp. 668–672, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. P. L. McGeer and E. G. McGeer, “Innate immunity, local inflammation, and degenerative disease,” Science of Aging Knowledge Environment, vol. 2002, no. 29, article re3, 2002.
  44. H. Wersching, T. Duning, H. Lohmann et al., “Serum C-reactive protein is linked to cerebral microstructural integrity and cognitive function,” Neurology, vol. 74, no. 13, pp. 1022–1029, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. M. B. Pepys and G. M. Hirschfield, “C-reactive protein: a critical update,” The Journal of Clinical Investigation, vol. 111, no. 12, pp. 1805–1812, 2003. View at Publisher · View at Google Scholar · View at Scopus
  46. J. Gussekloo, M. C. L. Schaap, M. Frölich, G. J. Blauw, and R. G. J. Westendorp, “C-reactive protein is a strong but nonspecific risk factor of fatal stroke in elderly persons,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 20, no. 4, pp. 1047–1051, 2000.
  47. V. Pasceri, J. T. Willerson, and E. T. H. Yeh, “Direct proinflammatory effect of C-reactive protein on human endothelial cells,” Circulation, vol. 102, no. 18, pp. 2165–2168, 2000. View at Scopus
  48. P. M. Ridker, C. H. Hennekens, J. E. Buring, and N. Rifai, “C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women,” The New England Journal of Medicine, vol. 342, no. 12, pp. 836–843, 2000. View at Publisher · View at Google Scholar · View at Scopus
  49. M. Saito, T. Ishimitsu, J. Minami, H. Ono, M. Ohrui, and H. Matsuoka, “Relations of plasma high-sensitivity C-reactive protein to traditional cardiovascular risk factors,” Atherosclerosis, vol. 167, no. 1, pp. 73–79, 2003. View at Publisher · View at Google Scholar · View at Scopus
  50. J. Gunstad, L. Bausserman, R. H. Paul et al., “C-reactive protein, but not homocysteine, is related to cognitive dysfunction in older adults with cardiovascular disease,” Journal of Clinical Neuroscience, vol. 13, no. 5, pp. 540–546, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. N. Raz, K. M. Rodrigue, K. M. Kennedy, and J. D. Acker, “Vascular health and longitudinal changes in brain and cognition in middle-aged and older adults,” Neuropsychology, vol. 21, no. 2, pp. 149–157, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. G. Stebbins, M. Carrillo, M. Moseley, et al., “Microstructural integrity of normal-appearing white matter in ParkmIon’s disease: a diffusion tensor imaging study with behavioral correlates,” Neurology, vol. 58, article A200, 2002.
  53. T. Yoshiura, F. Mihara, K. Ogomori, A. Tanaka, K. Kaneko, and K. Masuda, “Diffusion tensor in posterior cingulate gyrus: correlation with cognitive decline in Alzheimer's disease,” NeuroReport, vol. 13, no. 17, pp. 2299–2302, 2002. View at Publisher · View at Google Scholar · View at Scopus
  54. M. Filippi and M. A. Rocca, “MRI aspects of the “inflammatory phase” of multiple sclerosis,” Neurological Sciences, vol. 24, no. 5, pp. S275–S278, 2003. View at Publisher · View at Google Scholar · View at Scopus
  55. S. T. Engeiter, J. M. Provenzale, J. R. Petrella, D. M. Delong, and J. R. MacFall, “The effect of aging on the apparent diffusion coefficient of normal-appearing white matter,” American Journal of Roentgenology, vol. 175, no. 2, pp. 425–430, 2000. View at Scopus
  56. J. A. Kim, M. Montagnani, K. K. Kwang, and M. J. Quon, “Reciprocal relationships between insulin resistance and endothelial dysfunction: molecular and pathophysiological mechanisms,” Circulation, vol. 113, no. 15, pp. 1888–1904, 2006. View at Publisher · View at Google Scholar · View at Scopus
  57. S. Lavi, D. Gaitini, V. Milloul, and G. Jacob, “Impaired cerebral CO2 vasoreactivity: association with endothelial dysfunction,” American Journal of Physiology, vol. 291, no. 4, pp. H1856–H1861, 2006. View at Publisher · View at Google Scholar · View at Scopus
  58. K. M. Flegal, M. D. Carroll, C. L. Ogden, and C. L. Johnson, “Prevalence and trends in obesity among US adults, 1999-2000,” JAMA, vol. 288, no. 14, pp. 1723–1727, 2002. View at Scopus
  59. M. Visser, L. M. Bouter, G. M. McQuillan, M. H. Wener, and T. B. Harris, “Elevated C-reactive protein levels in overweight and obese adults,” JAMA, vol. 282, no. 22, pp. 2131–2135, 1999. View at Publisher · View at Google Scholar · View at Scopus
  60. A. E. Caballero, “Endothelial dysfunction in obesity and insulin resistance: a road to diabetes and heart disease,” Obesity Research, vol. 11, no. 11, pp. 1278–1289, 2003. View at Scopus
  61. C. R. W. Kuhlmann, L. Librizzi, D. Closhen et al., “Mechanisms of C-reactive protein-induced blood-brain barrier disruption,” Stroke, vol. 40, no. 4, pp. 1458–1466, 2009. View at Publisher · View at Google Scholar · View at Scopus
  62. N. J. Abbott, “Astrocyte-endothelial interactions and blood-brain barrier permeability,” Journal of Anatomy, vol. 200, no. 5, pp. 523–534, 2002.
  63. T. K. Shonk, R. A. Moats, P. Gifford et al., “Probable Alzheimer disease: diagnosis with proton MR spectroscopy,” Radiology, vol. 195, no. 1, pp. 65–72, 1995. View at Scopus
  64. W. E. Klunk, C. Xu, K. Panchalingam, R. J. McClure, and J. W. Pettegrew, “Quantitative 1H and 31 MRS of PCA extracts of postmortem Alzheimer's disease brain,” Neurobiology of Aging, vol. 17, no. 3, pp. 349–357, 1996. View at Publisher · View at Google Scholar · View at Scopus