About this Journal Submit a Manuscript Table of Contents
Cardiovascular Psychiatry and Neurology
Volume 2012 (2012), Article ID 204043, 8 pages
http://dx.doi.org/10.1155/2012/204043
Clinical Study

Are Cardiovascular Risk Factors Associated with Verbal Learning and Memory Impairment in Patients with Schizophrenia? A Cross-Sectional Study

1EA 3279—Public Health, Chronic Disease, and Quality of Life Research Unit, Aix-Marseille University, 13005 Marseille, France
2Department of Psychiatry, Sainte-Marguerite University Hospital, 13009 Marseille, France
3Department of Addiction, Sainte-Marguerite University Hospital, 13009 Marseille, France
4Department of Psychiatry, La Conception University Hospital, 13009 Marseille, France

Received 11 July 2012; Revised 25 September 2012; Accepted 20 October 2012

Academic Editor: Kenji Hashimoto

Copyright © 2012 Christophe Lancon et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. E. Kopald, K. M. Mirra, M. F. Egan, D. R. Weinberger, and T. E. Goldberg, “Magnitude of impact of executive functioning and IQ on episodic memory in Schizophrenia,” Biological Psychiatry, vol. 71, pp. 545–551, 2012.
  2. K. H. Nuechterlein, D. M. Barch, J. M. Gold, T. E. Goldberg, M. F. Green, and R. K. Heaton, “Identification of separable cognitive factors in schizophrenia,” Schizophrenia Research, vol. 72, no. 1, pp. 29–39, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. H. A. Nasrallah, “Linkage of cognitive impairments with metabolic disorders in schizophrenia,” American Journal of Psychiatry, vol. 167, no. 10, pp. 1155–1157, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. K. Yaffe, A. Kanaya, K. Lindquist et al., “The metabolic syndrome, inflammation, and risk of cognitive decline,” The Journal of the American Medical Association, vol. 292, no. 18, pp. 2237–2242, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. M. G. Dik, C. Jonker, H. C. Comijs et al., “Contribution of metabolic syndrome components to cognition in older individuals,” Diabetes Care, vol. 30, no. 10, pp. 2655–2660, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Y. Liu, H. D. Zhou, Z. Q. Xu, W. W. Zhang, X. Y. Li, and J. Zhao, “Metabolic syndrome and cognitive impairment amongst elderly people in Chinese population: a cross-sectional study,” European Journal of Neurology, vol. 16, no. 9, pp. 1022–1027, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. E. van den Berg, R. P. Kloppenborg, R. P. C. Kessels, L. J. Kappelle, and G. J. Biessels, “Type 2 diabetes mellitus, hypertension, dyslipidemia and obesity: a systematic comparison of their impact on cognition,” Biochimica et Biophysica Acta, vol. 1792, no. 5, pp. 470–481, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. A. J. Mitchell, D. Vancampfort, K. Sweers, R. van Winkel, W. Yu, and M. De Hert, “Prevalence of metabolic syndrome and metabolic abnormalities in schizophrenia and related disorders—a systematic review and meta-analysis,” Schizophrenia Bulletin. In press.
  9. P. Pramyothin and L. Khaodhiar, “Metabolic syndrome with the atypical antipsychotics,” Current Opinion in Endocrinology, Diabetes and Obesity, vol. 17, no. 5, pp. 460–466, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. B. F. Grant, D. S. Hasin, S. P. Chou, F. S. Stinson, and D. A. Dawson, “Nicotine dependence and psychiatric disorders in the United States: results from the National Epidemiologic Survey on Alcohol and Related Conditions,” Archives of General Psychiatry, vol. 61, no. 11, pp. 1107–1115, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Koskinen, J. Löhönen, H. Koponen, M. Isohanni, and J. Miettunen, “Prevalence of alcohol use disorders in schizophrenia—a systematic review and meta-analysis,” Acta Psychiatrica Scandinavica, vol. 120, no. 2, pp. 85–96, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. J. M. Meyer, H. A. Nasrallah, J. P. McEvoy et al., “The Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) Schizophrenia Trial: clinical comparison of subgroups with and without the metabolic syndrome,” Schizophrenia Research, vol. 80, no. 1, pp. 9–18, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. J. I. Friedman, S. Wallenstein, E. Moshier et al., “The effects of hypertension and body mass index on cognition in schizophrenia,” American Journal of Psychiatry, vol. 167, no. 10, pp. 1232–1239, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. APA: DSM-IV, Diagnostic and Statistical Manual of Mental Disorders, American Psychiatric Association, Washington, DC, USA, 4th edition, 2000.
  15. S. R. Kay, L. A. Opler, and A. Fiszbein, “Significance of positive and negative syndromes in chronic schizophrenia,” British Journal of Psychiatry, vol. 149, pp. 439–448, 1986. View at Scopus
  16. T. F. Heatherton, L. T. Kozlowski, R. C. Frecker, and K. O. Fagerstrom, “The Fagerstrom test for nicotine dependence: a revision of the Fagerstrom Tolerance Questionnaire,” British Journal of Addiction, vol. 86, no. 9, pp. 1119–1127, 1991. View at Scopus
  17. D. C. Delis, J. H. Kramer, E. Kaplan, and B. A. Ober, California Verbal Learning Test: Research Edition-Adult Version, The Psychological Corporation, New York, NY, USA, 1987.
  18. S. M. Grundy, J. I. Cleeman, S. R. Daniels et al., “Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute scientific statement,” Circulation, vol. 112, no. 17, pp. 2735–2752, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Cheng, J. B. Braunstein, C. Dennison, C. Nass, and R. S. Blumenthal, “Reducing global risk for cardiovascular disease: using lifestyle changes and pharmacotherapy,” Clinical Cardiology, vol. 25, no. 5, pp. 205–212, 2002. View at Scopus
  20. G. A. Bray, “Obesity is a chronic, relapsing neurochemical disease,” International Journal of Obesity, vol. 28, no. 1, pp. 34–38, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. K. F. Holden, K. Lindquist, F. A. Tylavsky, C. Rosano, T. B. Harris, and K. Yaffe, “Serum leptin level and cognition in the elderly: findings from the Health ABC Study,” Neurobiology of Aging, vol. 30, no. 9, pp. 1483–1489, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. X. L. Li, S. Aou, Y. Oomura, N. Hori, K. Fukunaga, and T. Hori, “Impairment of long-term potentiation and spatial memory in leptin receptor-deficient rodents,” Neuroscience, vol. 113, no. 3, pp. 607–615, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. Oomura, N. Hori, T. Shiraishi et al., “Leptin facilitates learning and memory performance and enhances hippocampal CA1 long-term potentiation and CaMK II phosphorylation in rats,” Peptides, vol. 27, no. 11, pp. 2738–2749, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. C. Reitz, M. X. Tang, J. Manly, R. Mayeux, and J. A. Luchsinger, “Hypertension and the risk of mild cognitive impairment,” Archives of Neurology, vol. 64, no. 12, pp. 1734–1740, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. V. Manning, S. Betteridge, S. Wanigaratne, D. Best, J. Strang, and M. Gossop, “Cognitive impairment in dual diagnosis inpatients with schizophrenia and alcohol use disorder,” Schizophrenia Research, vol. 114, no. 1–3, pp. 98–104, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. C. R. Bowie, M. R. Serper, S. Riggio, and P. D. Harvey, “Neurocognition, symptomatology, and functional skills in older alcohol-abusing schizophrenia patients,” Schizophrenia Bulletin, vol. 31, no. 1, pp. 175–182, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Olincy, J. G. Harris, L. L. Johnson et al., “Proof-of-concept trial of an α7 nicotinic agonist in schizophrenia,” Archives of General Psychiatry, vol. 63, no. 6, pp. 630–638, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. M. S. D'Souza and A. Markou, “Schizophrenia and tobacco smoking comorbidity: nAChR agonists in the treatment of schizophrenia-associated cognitive deficits,” Neuropharmacology, vol. 62, pp. 1564–1573, 2012. View at Publisher · View at Google Scholar · View at Scopus
  29. R. A. Whitmer, S. Sidney, J. Selby, S. C. Johnston, and K. Yaffe, “Midlife cardiovascular risk factors and risk of dementia in late life,” Neurology, vol. 64, no. 2, pp. 277–281, 2005. View at Scopus
  30. M. J. Smith, L. Wang, W. Cronenwett et al., “Alcohol use disorders contribute to hippocampal and subcortical shape differences in schizophrenia,” Schizophrenia Research, vol. 131, pp. 174–183, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. R. E. Drake, S. M. Essock, A. Shaner et al., “Implementing dual diagnosis services for clients with severe mental illness,” Psychiatric Services, vol. 52, no. 4, pp. 469–476, 2001. View at Publisher · View at Google Scholar · View at Scopus
  32. S. M. Essock, R. E. Drake, and B. J. Burns, “A research network to evaluate assertive community treatment: introduction,” The American Journal of Orthopsychiatry, vol. 68, no. 2, pp. 176–178, 1998. View at Scopus
  33. M. R. Picciotto and M. Zoli, “Nicotinic receptors in aging and dementia,” Journal of Neurobiology, vol. 53, no. 4, pp. 641–655, 2002. View at Publisher · View at Google Scholar · View at Scopus
  34. R. Jurado-Barba, I. Morales-Muñoz, B. A. del Manzano et al., “Relationship between measures of inhibitory processes in patients with schizophrenia: role of substance abuse disorders,” Psychiatry Research, vol. 190, pp. 187–192, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. E. L. M. Ochoa and J. Lasalde-Dominicci, “Cognitive deficits in schizophrenia: focus on neuronal nicotinic acetylcholine receptors and smoking,” Cellular and Molecular Neurobiology, vol. 27, no. 5, pp. 609–639, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. H. Adachi, H. Yanai, and Y. Hirowatari, “The underlying mechanisms for olanzapine-induced hypertriglyceridemia,” Journal of Clinical Medicine Research, vol. 4, pp. 206–208, 2012.
  37. C. Garcia-Rizo, E. Fernandez-Egea, C. Oliveira, A. Justicia, M. Bernardo, and B. Kirkpatrick, “Inflammatory markers in antipsychotic-naïve patients with nonaffective psychosis and deficit vs. nondeficit features,” Psychiatry Research, vol. 198, no. 2, pp. 212–215, 2012.
  38. H. A. Nasrallah and J. W. Newcomer, “Atypical antipsychotics and metabolic dysregulation: evaluating the risk/benefit equation and improving the standard of care,” Journal of Clinical Psychopharmacology, vol. 24, no. 5, supplement 1, pp. S7–S14, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. H. Y. Meltzer and S. R. McGurk, “The effects of clozapine, risperidone, and olanzapine on cognitive function in schizophrenia,” Schizophrenia Bulletin, vol. 25, no. 2, pp. 233–255, 1999. View at Scopus