About this Journal Submit a Manuscript Table of Contents
Cardiovascular Psychiatry and Neurology
Volume 2013 (2013), Article ID 530356, 10 pages
http://dx.doi.org/10.1155/2013/530356
Review Article

Multiple Sclerosis and the Blood-Central Nervous System Barrier

MS Therapeutics Ltd., Beechey House, 87 Church Street, Crowthorne, Berks RG45 7AW, UK

Received 22 October 2012; Revised 25 December 2012; Accepted 25 December 2012

Academic Editor: Gjumrakch Aliev

Copyright © 2013 Alan M. Palmer. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Bol, J. Smolders, A. Duits, I. M. J. Lange, and R. Hupperts, “Fatigue and heat sensitivity in patients with multiple sclerosis,” Acta Neurologica Scandinavica, vol. 126, no. 6, pp. 384–389, 2012. View at Publisher · View at Google Scholar
  2. A. Compston and A. Coles, “Multiple sclerosis,” The Lancet, vol. 372, no. 9648, pp. 1502–1517, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. A. M. Palmer, “Pharmacotherapeuetic options for the treatment of Multiple sclerosis,” Clinical Medicine Insights, vol. 4, pp. 145–168, 2012. View at Publisher · View at Google Scholar
  4. F. D. Lublin and S. C. Reingold, “Defining the clinical course of multiple sclerosis: results of an international survey,” Neurology, vol. 46, no. 4, pp. 907–911, 1996. View at Scopus
  5. WHO, Atlas Multiple Sclerosis, 2008, http://www.who.int/mental_health/neurology/Atlas_MS_WEB.pdf.
  6. J. Antel, S. Antel, Z. Caramanos, D. L. Arnold, and T. Kuhlmann, “Primary progressive multiple sclerosis: part of the MS disease spectrum or separate disease entity?” Acta Neuropathologica, vol. 123, no. 5, pp. 627–638, 2012. View at Publisher · View at Google Scholar
  7. M. Koch, E. Kingwell, P. Rieckmann, and H. Tremlett, “The natural history of primary progressive multiple sclerosis,” Neurology, vol. 73, no. 23, pp. 1996–2002, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. D. H. Miller and S. M. Leary, “Primary-progressive multiple sclerosis,” Lancet Neurology, vol. 6, no. 10, pp. 903–912, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. K. Pandey and F. D. Lublin, “Clinically isolated syndrome and multiple sclerosis: rethinking the arsenal,” Current Treatment Options in Neurology, vol. 11, no. 3, pp. 193–202, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Forn, M. A. Rocca, P. Valsasina et al., “Functional magnetic resonance imaging correlates of cognitive performance in patients with a clinically isolated syndrome suggestive of multiple sclerosis at presentation: an activation and connectivity study,” Multiple Sclerosis, vol. 18, no. 2, pp. 153–163, 2012. View at Publisher · View at Google Scholar
  11. L. K. Fisniku, P. A. Brex, D. R. Altmann et al., “Disability and T2 MRI lesions: a 20-year follow-up of patients with relapse onset of multiple sclerosis,” Brain, vol. 131, no. 3, pp. 808–817, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Koch, E. Kingwell, P. Rieckmann et al., “The natural history of secondary progressive multiple sclerosis,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 81, no. 9, pp. 1039–1043, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Rovaris, C. Confavreux, R. Furlan, L. Kappos, G. Comi, and M. Filippi, “Secondary progressive multiple sclerosis: current knowledge and future challenges,” Lancet Neurology, vol. 5, no. 4, pp. 343–354, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Trojano and D. Paolicelli, “The differential diagnosis of multiple sclerosis: classification and clinical features of relapsing and progressive neurological syndromes,” Neurological Sciences, vol. 22, supplement 2, pp. S98–S102, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Ceccarelli, R. Bakshi, and M. Neema, “MRI in multiple sclerosis: a review of the current literature,” Current Opinion in Neurology, vol. 25, no. 4, pp. 402–409, 2012. View at Publisher · View at Google Scholar
  16. M. Filippi and M. A. Rocca, “MR imaging of multiple sclerosis,” Radiology, vol. 259, no. 3, pp. 659–681, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Filippi, M. A. Rocca, F. Barkhof et al., “Association between pathological and MRI findings in multiple sclerosis,” The Lancet Neurology, vol. 11, no. 4, pp. 349–360, 2012. View at Publisher · View at Google Scholar
  18. J. H. Simon, D. Li, A. Traboulsee et al., “Standardized MR imaging protocol for multiple sclerosis: consortium of MS Centers consensus guidelines,” American Journal of Neuroradiology, vol. 27, no. 2, pp. 455–461, 2006. View at Scopus
  19. C. H. Polman, S. C. Reingold, G. Edan et al., “Diagnostic criteria for multiple sclerosis: 2005 Revisions to the “McDonald Criteria”,” Annals of Neurology, vol. 58, no. 6, pp. 840–846, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Faridar, G. Eskandari, M. A. Sahraian, A. Minagar, and A. Azimi, “Vitamin D and multiple sclerosis: a critical review and recommendations on treatment,” Acta Neurologica Belgica, vol. 112, no. 4, pp. 327–333, 2012. View at Publisher · View at Google Scholar
  21. D. G. Haegert, “Multiple sclerosis: a disorder of altered T-cell homeostasis,” Multiple Sclerosis International, vol. 2011, Article ID 461304, 6 pages, 2011. View at Publisher · View at Google Scholar
  22. S. S. Ousman, B. H. Tomooka, J. M. Van Noort et al., “Protective and therapeutic role for αB-crystallin in autoimmune demyelination,” Nature, vol. 448, no. 7152, pp. 474–479, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. E. K. Mathey, T. Derfuss, M. K. Storch et al., “Neurofascin as a novel target for autoantibody-mediated axonal injury,” Journal of Experimental Medicine, vol. 204, no. 10, pp. 2363–2372, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. A. M. Burrell, A. E. Handel, S. V. Ramagopalan, G. C. Ebers, and J. M. Morahan, “Epigenetic mechanisms in multiple sclerosis and the major histocompatibility complex (MHC),” Discovery Medicine, vol. 11, no. 58, pp. 187–196, 2011. View at Scopus
  25. G. C. Ebers, D. E. Bulman, and A. D. Sadovnick, “A population-based study of multiple sclerosis in twins,” New England Journal of Medicine, vol. 315, no. 26, pp. 1638–1642, 1986. View at Scopus
  26. L. F. Barcellos, S. Sawcer, P. P. Ramsay et al., “Heterogeneity at the HLA-DRB1 locus and risk for multiple sclerosis,” Human Molecular Genetics, vol. 15, no. 18, pp. 2813–2824, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. P.-A. Gourraud, H. F. Harbo, S. L. Hauser, and S. E. Baranzini, “The genetics of multiple sclerosis: an up-to-date review,” Immunological Reviews, vol. 248, no. 1, pp. 87–103, 2012. View at Publisher · View at Google Scholar
  28. P. I. W. De Bakker, “Genome-wide meta-analysis identifies novel multiple sclerosis susceptibility loci,” Annals of Neurology, vol. 70, no. 6, pp. 897–912, 2011. View at Publisher · View at Google Scholar
  29. S. Sawcer, G. Hellenthal, N. A. Patsopoulos et al., “Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis,” Nature, vol. 476, no. 7359, pp. 214–219, 2011. View at Publisher · View at Google Scholar
  30. A. E. Handel, G. Giovannoni, G. C. Ebers, and S. V. Ramagopalan, “Environmental factors and their timing in adult-onset multiple sclerosis,” Nature Reviews Neurology, vol. 6, no. 3, pp. 156–166, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. A. E. Handel, A. J. Williamson, G. Disanto, R. Dobson, G. Giovannoni, and S. V. Ramagopalan, “Smoking and multiple sclerosis: an updated meta-analysis,” PLoS ONE, vol. 6, no. 1, Article ID e16149, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. A. E. Handel, A. J. Williamson, G. Disanto, L. Handunnetthi, G. Giovannoni, and S. V. Ramagopalan, “An updated meta-analysis of risk of multiple sclerosis following infectious mononucleosis,” PLoS ONE, vol. 5, no. 9, Article ID e12496, pp. 1–5, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. D. M. Wingerchuk, “Environmental factors in multiple sclerosis: Epstein-Barr virus, vitamin D, and cigarette smoking,” Mount Sinai Journal of Medicine, vol. 78, no. 2, pp. 221–230, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. N. J. Abbott, A. A. K. Patabendige, D. E. M. Dolman, S. R. Yusof, and D. J. Begley, “Structure and function of the blood-brain barrier,” Neurobiology of Disease, vol. 37, no. 1, pp. 13–25, 2010. View at Publisher · View at Google Scholar
  35. B. Engelhardt, “The blood-central nervous system barriers actively control immune cell entry into the central nervous system,” Current Pharmaceutical Design, vol. 14, no. 16, pp. 1555–1565, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. A. M. Palmer, “The role of the blood-CNS barrier in CNS disorders and their treatment,” Neurobiology of Disease, vol. 37, no. 1, pp. 3–12, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Mahringer, M. Ott, I. Reimold, V. Reichel, and G. Fricker, “The ABC of the blood-brain barrier—regulation of drug efflux pumps,” Current Pharmaceutical Design, vol. 17, no. 26, pp. 2762–2770, 2011.
  38. S. Shen and W. Zhang, “ABC transporters and drug efflux at the blood-brain barrier,” Reviews in the Neurosciences, vol. 21, no. 1, pp. 29–53, 2010. View at Scopus
  39. M. Cereijido, J. Valdés, L. Shoshani, and R. G. Contreras, “Role of tight junctions in establishing and maintaining cell polarity,” Annual Review of Physiology, vol. 60, pp. 161–177, 1998. View at Publisher · View at Google Scholar · View at Scopus
  40. A. M. Palmer, “Brain disorders, brain medicines and the blood-brain barrier,” in Horizons in Neuroscience Research, A. Costa and E. Villalba, Eds., vol. 6, pp. 97–122, Nova Science Publishers, 2012.
  41. A. M. Palmer and M. S. Alavijeh, “Translational CNS medicines research,” Drug Discovery Today, vol. 17, no. 19-20, pp. 1068–1078, 2012. View at Publisher · View at Google Scholar
  42. R. Gandhi, A. Laroni, and H. L. Weiner, “Role of the innate immune system in the pathogenesis of multiple sclerosis,” Journal of Neuroimmunology, vol. 221, no. 1-2, pp. 7–14, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. L. H. Kasper and J. Shoemaker, “Multiple sclerosis immunology: the healthy immune system vs the MS immune system,” Neurology, vol. 74, supplement 1, pp. S2–S8, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. T. Holmøy and F. Vartdal, “The immunological basis for treatment of multiple sclerosis,” Scandinavian Journal of Immunology, vol. 66, no. 4, pp. 374–382, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. P. Conlon, J. R. Oksenberg, J. Zhang, and L. Steinman, “The immunobiology of multiple sclerosis: an autoimmune disease of the central nervous system,” Neurobiology of Disease, vol. 6, no. 3, pp. 149–166, 1999. View at Publisher · View at Google Scholar · View at Scopus
  46. I. Galea, I. Bechmann, and V. H. Perry, “What is immune privilege (not)?” Trends in Immunology, vol. 28, no. 1, pp. 12–18, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. C. Larochelle, J. I. Alvarez, and A. Prat, “How do immune cells overcome the blood-brain barrier in multiple sclerosis?” FEBS Letters, vol. 585, no. 23, pp. 3770–3780, 2011. View at Publisher · View at Google Scholar
  48. D. A. Carlow, K. Gossens, S. Naus, K. M. Veerman, W. Seo, and H. J. Ziltener, “PSGL-1 function in immunity and steady state homeostasis,” Immunological Reviews, vol. 230, no. 1, pp. 75–96, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. A. E. R. Hicks, S. L. Nolan, V. C. Ridger, P. G. Hellewell, and K. E. Norman, “Recombinant P-selectin glycoprotein ligand-1 directly inhibits leukocyte rolling by all 3 selectins in vivo: complete inhibition of rolling is not required for anti-inflammatory effect,” Blood, vol. 101, no. 8, pp. 3249–3256, 2003. View at Publisher · View at Google Scholar · View at Scopus
  50. K. D. Patel, S. L. Cuvelier, and S. Wiehler, “Selectins: critical mediators of leukocyte recruitment,” Seminars in Immunology, vol. 14, no. 2, pp. 73–81, 2002. View at Publisher · View at Google Scholar · View at Scopus
  51. M. Sperandio, C. A. Gleissner, and K. Ley, “Glycosylation in immune cell trafficking,” Immunological Reviews, vol. 230, no. 1, pp. 97–113, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. W. A. Sheremata, A. Minagar, J. S. Alexander, and T. Vollmer, “The role of alpha-4 integrin in the aetiology of multiple sclerosis: current knowledge and therapeutic implications,” CNS Drugs, vol. 19, no. 11, pp. 909–922, 2005. View at Publisher · View at Google Scholar · View at Scopus
  53. B. Engelhardt, B. Kempe, S. Merfeld-Clauss et al., “P-selectin glycoprotein ligand 1 is not required for the development of experimental autoimmune encephalomyelitis in SJL and C57BL/6 mice,” Journal of Immunology, vol. 175, no. 2, pp. 1267–1275, 2005. View at Scopus
  54. I. Bartholomäus, N. Kawakami, F. Odoardi et al., “Effector T cell interactions with meningeal vascular structures in nascent autoimmune CNS lesions,” Nature, vol. 462, no. 7269, pp. 94–98, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. B. Engelhardt, “Immune cell entry into the central nervous system: involvement of adhesion molecules and chemokines,” Journal of the Neurological Sciences, vol. 274, no. 1-2, pp. 23–26, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. T. Holmøy, “The immunology of multiple sclerosis: disease mechanisms and therapeutic targets,” Minerva Medica, vol. 99, no. 2, pp. 119–140, 2008. View at Scopus
  57. H. Wekerle, “Immune pathogenesis of multiple sclerosis,” Neurological Sciences, vol. 26, supplement 1, pp. S1–S2, 2005. View at Publisher · View at Google Scholar · View at Scopus
  58. L. Filli, P. Kuster, S. Traud et al., “Spatiotemporal distribution of white matter lesions in relapsing-remitting and secondary progressive multiple sclerosis,” Multiple Sclerosis, vol. 18, no. 11, pp. 1577–1584, 2012. View at Publisher · View at Google Scholar
  59. M. P. Pender and J. M. Greer, “Immunology of multiple sclerosis,” Current Allergy and Asthma Reports, vol. 7, no. 4, pp. 285–292, 2007. View at Publisher · View at Google Scholar · View at Scopus
  60. M. Sospedra and R. Martin, “Immunology of multiple sclerosis,” Annual Review of Immunology, vol. 23, pp. 683–747, 2005. View at Publisher · View at Google Scholar · View at Scopus
  61. A. Kutzelnigg, C. F. Lucchinetti, C. Stadelmann et al., “Cortical demyelination and diffuse white matter injury in multiple sclerosis,” Brain, vol. 128, no. 11, pp. 2705–2712, 2005. View at Publisher · View at Google Scholar · View at Scopus
  62. C. M. P. Vos, J. J. G. Geurts, L. Montagne et al., “Blood-brain barrier alterations in both focal and diffuse abnormalities on postmortem MRI in multiple sclerosis,” Neurobiology of Disease, vol. 20, no. 3, pp. 953–960, 2005. View at Publisher · View at Google Scholar · View at Scopus
  63. J. Huppert, D. Closhen, A. Croxford et al., “Cellular mechanisms of IL-17-induced blood-brain barrier disruption,” FASEB Journal, vol. 24, no. 4, pp. 1023–1034, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. H. Kebir, K. Kreymborg, I. Ifergan et al., “Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation,” Nature Medicine, vol. 13, no. 10, pp. 1173–1175, 2007. View at Publisher · View at Google Scholar · View at Scopus
  65. E. Miller, “Multiple sclerosis,” Advances in Experimental Medicine and Biology, vol. 724, pp. 222–238, 2012. View at Publisher · View at Google Scholar
  66. F. Luessi, V. Siffrin, and F. Zipp, “Neurodegeneration in multiple sclerosis: novel treatment strategies,” Expert Review of Neurotherapeutics, vol. 12, no. 9, pp. 1061–1077, 2012. View at Publisher · View at Google Scholar
  67. D. Baker, W. Gerritsen, J. Rundle, and S. Amor, “Critical appraisal of animal models of multiple sclerosis,” Multiple Sclerosis, vol. 17, no. 6, pp. 647–657, 2011. View at Publisher · View at Google Scholar · View at Scopus
  68. C. S. Constantinescu, N. Farooqi, K. O'Brien, and B. Gran, “Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS),” British Journal of Pharmacology, vol. 164, no. 4, pp. 1079–1106, 2011. View at Publisher · View at Google Scholar
  69. R. Gold, C. Linington, and H. Lassmann, “Understanding pathogenesis and therapy of multiple sclerosis via animal models: 70 Years of merits and culprits in experimental autoimmune encephalomyelitis research,” Brain, vol. 129, no. 8, pp. 1953–1971, 2006. View at Publisher · View at Google Scholar · View at Scopus
  70. T. A. Yednock, C. Cannon, L. C. Fritz, F. Sanchez-Madrid, L. Steinmann, and N. Karin, “Prevention of experimental autoimmune encephalomyelitis by antibodies against α4β1 integrin,” Nature, vol. 356, no. 6364, pp. 63–66, 1992. View at Publisher · View at Google Scholar · View at Scopus
  71. N. Tubridy, P. O. Behan, R. Capildeo et al., “The effect of anti-α4 integrin antibody on brain lesion activity in MS,” Neurology, vol. 53, no. 3, pp. 466–472, 1999.
  72. E. Pucci, G. Giuliani, A. Solari et al., “Natalizumab for relapsing remitting multiple sclerosis,” Cochrane Database of Systematic Reviews, no. 10, Article ID CD007621, 2011.
  73. S. M. Kerfoot, M. U. Norman, B. M. Lapointe, C. S. Bonder, L. Zbytnuik, and P. Kubes, “Reevaluation of P-selectin and α4 integrin as targets for the treatment of experimental autoimmune encephalomyelitis,” Journal of Immunology, vol. 176, no. 10, pp. 6225–6234, 2006. View at Scopus
  74. R. Bill, A. Döring, U. Deutsch, and B. Engelhardt, “PSGL-1 is dispensible for the development of active experimental autoimmune encephalomyelitis in SJL/J mice,” Journal of Neuroimmunology, vol. 232, no. 1-2, pp. 207–208, 2011. View at Publisher · View at Google Scholar · View at Scopus
  75. I. Osmers, D. C. Bullard, and S. R. Barnum, “PSGL-1 is not required for development of experimental autoimmune encephalomyelitis,” Journal of Neuroimmunology, vol. 166, no. 1-2, pp. 193–196, 2005. View at Publisher · View at Google Scholar · View at Scopus
  76. A. Döring, M. Wild, D. Vestweber, U. Deutsch, and B. Engelhardt, “E- and P-selectin are not required for the development of experimental autoimmune encephalomyelitis in C57BL/6 and SJL mice,” Journal of Immunology, vol. 179, no. 12, pp. 8470–8479, 2007. View at Scopus
  77. L. Battistini, L. Piccio, B. Rossi et al., “CD8+ T cells from patients with acute multiple sclerosis display selective increase of adhesiveness in brain venules: a critical role for P-selectin glycoprotein ligand-1,” Blood, vol. 101, no. 12, pp. 4775–4782, 2003. View at Scopus
  78. B. Bahbouhi, L. Berthelot, S. Pettré et al., “Peripheral blood CD4+ T lymphocytes from multiple sclerosis patients are characterized by higher PSGL-1 expression and transmigration capacity across a human blood-brain barrier-derived endothelial cell line,” Journal of Leukocyte Biology, vol. 86, no. 5, pp. 1049–1063, 2009. View at Publisher · View at Google Scholar · View at Scopus
  79. M. S. Alavijeh and A. M. Palmer, “Measurement of the pharmacokinetics and pharmacodynamics of neuroactive compounds,” Neurobiology of Disease, vol. 37, no. 1, pp. 38–47, 2010. View at Publisher · View at Google Scholar · View at Scopus
  80. K. Hellwig and R. Gold, “Progressive multifocal leukoencephalopathy and natalizumab,” Journal of Neurology, vol. 258, no. 11, pp. 1920–1928, 2011. View at Publisher · View at Google Scholar · View at Scopus
  81. T. A. Yousry, E. O. Major, C. Ryschkewitsch et al., “Evaluation of patients treated with natalizumab for progressive multifocal leukoencephalopathy,” New England Journal of Medicine, vol. 354, no. 9, pp. 924–933, 2006. View at Publisher · View at Google Scholar · View at Scopus
  82. D. Pelletier and D. A. Hafler, “Fingolimod for multiple sclerosis,” New England Journal of Medicine, vol. 366, no. 4, pp. 339–347, 2012. View at Publisher · View at Google Scholar
  83. J. Chun and H. P. Hartung, “Mechanism of action of oral fingolimod (FTY720) in multiple sclerosis,” Clinical Neuropharmacology, vol. 33, no. 2, pp. 91–101, 2010. View at Publisher · View at Google Scholar · View at Scopus
  84. A. M. Palmer, “Teriflunomide, an inhibitor of dihydroorotate dehydrogenase for the potential oral treatment of multiple sclerosis,” Current Opinion in Investigational Drugs, vol. 11, no. 11, pp. 1313–1323, 2010. View at Scopus
  85. M. C. Claussen and T. Korn, “Immune mechanisms of new therapeutic strategies in MS—teriflunomide,” Clinical Immunology, vol. 142, no. 1, pp. 49–56, 2011. View at Publisher · View at Google Scholar · View at Scopus
  86. T. Limsakun and F. Menguy-Vacheron, “Pharmacokinetics of oral teriflunomide, a novel oral disease-modifying agent under investigation for the treatment of multiple sclerosis,” Neurology, vol. 74, p. A415, 2010.
  87. D. H. Miller, R. Grove, O. Graff et al., “Firategrast for relapsing remitting multiple sclerosis: a phase 2, randomised, double-blind, placebo-controlled trial,” The Lancet Neurology, vol. 11, no. 2, pp. 131–139, 2012. View at Publisher · View at Google Scholar
  88. A. R. Blight, “Treatment of walking impairment in multiple sclerosis with dalfampridine,” Therapeutic Advances in Neurological Disorders, vol. 4, no. 2, pp. 99–109, 2011. View at Publisher · View at Google Scholar · View at Scopus
  89. A. D. Goodman, T. R. Brown, K. R. Edwards et al., “A phase 3 trial of extended release oral dalfampridine in multiple sclerosis,” Annals of Neurology, vol. 68, no. 4, pp. 494–502, 2010. View at Publisher · View at Google Scholar · View at Scopus
  90. A. D. Goodman and M. Hyland, “Dalfampridine in multiple sclerosis,” Drugs of Today, vol. 46, no. 9, pp. 635–639, 2010. View at Publisher · View at Google Scholar · View at Scopus
  91. G. Damsma, P. T. M. Biessels, B. H. C. Westerink, J. B. De Vries, and A. S. Horn, “Differential effects of 4-aminopyridine and 2.4-diaminopyridine on the in vivo release of acetylcholine and dopamine in freely moving rats measured by intrastriatal dialysis,” European Journal of Pharmacology, vol. 145, no. 1, pp. 15–20, 1988. View at Publisher · View at Google Scholar · View at Scopus
  92. M. Lemeignan, H. Millart, and D. Lamiable, “Evaluation of 4-aminopyridine and 3,4-diaminopyridine penetrability into cerebrospinal fluid in anesthetized rats,” Brain Research, vol. 304, no. 1, pp. 166–169, 1984. View at Publisher · View at Google Scholar · View at Scopus
  93. D. R. Cornblath, E. J. Bienen, and A. R. Blight, “The safety profile of dalfampridine extended release in multiple sclerosis clinical trials,” Clinical Therapeutics, vol. 34, no. 5, pp. 1056–1069, 2012. View at Publisher · View at Google Scholar
  94. T. E. Pikoulas and M. A. Fuller, “Dalfampridine: a medication to improve walking in patients with multiple sclerosis,” Annals of Pharmacotherapy, vol. 46, no. 7-8, pp. 1010–1015, 2012. View at Publisher · View at Google Scholar
  95. J. Sastre-Garriga, C. Vila, S. Clissold, and X. Montalban, “THC and CBD oromucosal spray (Sativex) in the management of spasticity associated with multiple sclerosis,” Expert Review of Neurotherapeutics, vol. 11, no. 5, pp. 627–637, 2011. View at Publisher · View at Google Scholar · View at Scopus
  96. G. Pryce and D. Baker, “Potential control of multiple sclerosis by cannabis and the endocannabinoid system,” CNS and Neurological Disorders, vol. 11, no. 5, pp. 624–641, 2012.
  97. S. Deiana, A. Watanabe, Y. Yamasaki et al., “Plasma and brain pharmacokinetic profile of cannabidiol (CBD), cannabidivarine (CBDV), Δ9-tetrahydrocannabivarin (THCV) and cannabigerol (CBG) in rats and mice following oral and intraperitoneal administration and CBD action on obsessive-compulsive behaviour,” Psychopharmacology, vol. 219, no. 3, pp. 859–873, 2012. View at Publisher · View at Google Scholar · View at Scopus
  98. D. Wade, “Evaluation of the safety and tolerability profile of Sativex: is it reassuring enough?” Expert Review of Neurotherapeutics, vol. 12, no. 4, supplement, pp. 9–14, 2012. View at Publisher · View at Google Scholar