About this Journal Submit a Manuscript Table of Contents
Cardiovascular Psychiatry and Neurology
Volume 2013 (2013), Article ID 814967, 9 pages
http://dx.doi.org/10.1155/2013/814967
Research Article

Combining Personality Traits with Traditional Risk Factors for Coronary Stenosis: An Artificial Neural Networks Solution in Patients with Computed Tomography Detected Coronary Artery Disease

1University of Bergamo, Piazzale S. Agostino 2, P.O. Box 24129, Bergamo, Italy
2Villa Santa Maria Institute, IV Novembre, P.O. Box 22038, Tavernerio, Italy
3Semeion, Research Centre of Sciences of Communication, Via Sersale 117, P.O. Box 00128, Rome, Italy
4Department of Mathematical and Statistical Sciences, University of Colorado at Denver, P.O. Box 173364, Denver, CO, USA
5School of Electronic and Information Engineering, Beihang University, Xueyuan Road No. 37, Haidian District, Beijing, China
6Division of Cardiology, Cardiocentro Lugano CH-6900, Switzerland
7Center of Research on Psychology in Somatic Diseases, CoRPS, Tilburg University, Warandelaan 2, P.O. Box 90153, 5000 LE Tilburg, The Netherlands

Received 11 April 2013; Accepted 29 August 2013

Academic Editor: Janusz K. Rybakowski

Copyright © 2013 Angelo Compare et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. F. Faletra, C. Klersy, I. D'Angeli et al., “Relation between coronary atherosclerotic plaques and traditional risk factors in people with no history of cardiovascular disease undergoing multi-detector computed coronary angiography,” Heart, vol. 95, no. 15, pp. 1265–1272, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. W. B. Kannel, D. McGee, and T. Gordon, “A general cardiovascular risk profile: the Framingham study,” American Journal of Cardiology, vol. 38, no. 1, pp. 46–51, 1976. View at Scopus
  3. R. M. Conroy, K. Pyörälä, A. P. Fitzgerald et al., “Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project,” European Heart Journal, vol. 24, no. 11, pp. 987–1003, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. K. Rothman and S. Greenland, Modern Epidemiology, Lippincott Williams & Wilkins, New York, NY, USA, 1998.
  5. D. Kleinbaum, Survival Analysis, Springer, New York, NY, USA, 1996.
  6. D. B. Panagiotakos and V. Stavrinos, “Methodological issues in cardiovascular epidemiology: the risk of determining absolute risk through statistical models,” Vascular Health and Risk Management, vol. 2, no. 3, pp. 309–315, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. E. Grossi, “How artificial intelligence tools can be used to assess individual patient risk in cardiovascular disease: problems with the current methods,” BMC Cardiovascular Disorders, vol. 6, p. 20, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. R. Voss, P. Cullen, H. Schulte, and G. Assmann, “Prediction of risk of coronary events in middle-aged men in the Prospective Cardiovascular Münster Study (PROCAM) using neural networks,” International Journal of Epidemiology, vol. 31, no. 6, pp. 1253–1262, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. P. E. Puddu and A. Menotti, “Artificial neural network versus multiple logistic function to predict 25-year coronary heart disease mortality in the Seven Countries Study,” European Journal of Cardiovascular Prevention and Rehabilitation, vol. 16, no. 5, pp. 583–591, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Chida and A. Steptoe, “The association of anger and hostility with future coronary heart disease. A meta-analytic review of prospective evidence,” Journal of the American College of Cardiology, vol. 53, no. 11, pp. 936–946, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Denollet, J. Vaes, and D. L. Brutsaert, “Inadequate response to treatment in coronary heart disease: adverse effects of type D personality and younger age on 5-year prognosis and quality of life,” Circulation, vol. 102, no. 6, pp. 630–635, 2000. View at Scopus
  12. P. Greenland, M. D. Knoll, J. Stamler et al., “Major risk factors as antecedents of fatal and nonfatal coronary heart disease events,” Journal of the American Medical Association, vol. 290, no. 7, pp. 891–897, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Compare, E. Germani, R. Proietti, and D. Janeway, “Clinical psychology and cardiovascular disease: an up-to-date clinical practice review for assessment and treatment of anxiety and depression,” Clinical Practice and Epidemiology in Mental Health, vol. 7, pp. 148–156, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Compare, “Personality traits, cardiac risk factors and coronary artery plaque in people with no history of cardiovascular disease,” Journal of Cardiovascular Medicine, 2013.
  15. E. O'Brien, N. Atkins, G. Stergiou et al., “European society of hypertension international protocol revision 2010 for the validation of blood pressure measuring devices in adults,” Blood Pressure Monitoring, vol. 15, no. 1, pp. 23–38, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. K. G. Alberti, R. H. Eckel, S. M. Grundy et al., “Harmonizing the metabolic syndrome: a joint interim statement of the international diabetes federation task force on epidemiology and prevention; national heart, lung, and blood institute; American heart association; world heart federation; international atherosclerosis society; and international association for the study of obesity,” Circulation, vol. 120, no. 16, pp. 1640–1645, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. W. W. Cook and D. M. Medley, “Proposed hostility and Pharisaic-virtue scales for the MMPI,” Journal of Applied Psychology, vol. 38, no. 6, pp. 414–418, 1954. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Suls and C. K. Wan, “The relationship between trait hostility and cardiovascular reactivity: a quantitative review and analysis,” Psychophysiology, vol. 30, no. 6, pp. 615–626, 1993. View at Publisher · View at Google Scholar · View at Scopus
  19. S. H. Boyle, J. E. Michalek, and E. C. Suarez, “Covariation of psychological attributes and incident coronary heart disease in U.S. Air Force veterans of the Vietnam war,” Psychosomatic Medicine, vol. 68, no. 6, pp. 844–850, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Butcher, J. R. Graham, Y. S. Ben-Porath, A. Tellegen, W. G. Dahlstrom, and B. Kaemmer, Minnesota Multiphasic Personality Inventory-2 (MMPI-2): Manual For Administration and Scoring, University of Minnesota Press, Minneapolis, Minn, USA, 1989.
  21. J. Butcher, J. R. Graham, C. L. Williams, and Y. S. Ben-Porath, Development and Use of the MMPI-2 Content Scales, University of Minnesota Press, Minneapolis, Minn, USA, 1990.
  22. A. L. Brophy, “MMPI and MMPI-2 scores on the Cook-Medley hostility scale,” Psychological Reports, vol. 80, no. 3, pp. 1087–1090, 1997. View at Scopus
  23. L. D. Kubzansky, S. R. Cole, I. Kawachi, P. Vokonas, and D. Sparrow, “Shared and unique contributions of anger, anxiety, and depression to coronary heart disease: a prospective study in the normative aging study,” Annals of Behavioral Medicine, vol. 31, no. 1, pp. 21–29, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Denollet, “DS14: standard assessment of negative affectivity, social inhibition, and type D personality,” Psychosomatic Medicine, vol. 67, no. 1, pp. 89–97, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. E. Ferguson, L. Williams, R. C. O’Connor, et al., “A taxometric analysis of type-D personality,” Psychosomatic Medicine, vol. 71, no. 9, pp. 981–986, 2009. View at Publisher · View at Google Scholar
  26. M. Buscema and E. Grossi, “The semantic connectivity map: an adapting self-organising knowledge discovery method in data bases. Experience in gastro-oesophageal reflux disease,” International Journal of Data Mining and Bioinformatics, vol. 2, no. 4, pp. 362–404, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. F. Licastro, E. Porcellini, M. Chiappelli et al., “Multivariable network associated with cognitive decline and dementia,” Neurobiology of Aging, vol. 31, no. 2, pp. 257–269, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. F. Licastro, M. Chiappelli, E. Porcellini et al., “Gene-gene and gene-clinical factors interaction in acute myocardial infarction: a new detailed risk chart,” Current Pharmaceutical Design, vol. 16, no. 7, pp. 783–788, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Rozanski, J. A. Blumenthal, and J. Kaplan, “Impact of psychological factors on the pathogenesis of cardiovascular disease and implications for therapy,” Circulation, vol. 99, no. 16, pp. 2192–2217, 1999. View at Scopus
  30. T. W. Smith, K. Glazer, J. M. Ruiz, and L. C. Gallo, “Hostility, anger, aggressiveness, and coronary heart disease: an interpersonal perspective on personality, emotion, and health,” Journal of Personality, vol. 72, no. 6, pp. 1217–1270, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Compare, M. Manzoni, E. Molinari, and A. Möller, “Personalità di tipo A e di tipo D, rabbia e rischio di recidiva cardiaca, in Mente e cuore,” in Clinica Psicologica Della Malattia Cardiaca, E. Molinari, A. Compare, and G. Parati, Eds., Springer, Milano, Italy, 2007.
  32. I. Kawachi, D. Sparrow, A. Spiro, P. Vokonas, and S. T. Weiss, “A prospective study of anger and coronary heart disease: the normative aging study,” Circulation, vol. 94, no. 9, pp. 2090–2095, 1996. View at Scopus
  33. R. L. Verrier and M. A. Mittleman, “Life-threatening cardiovascular consequences of anger in patients with coronary heart disease,” Cardiology Clinics, vol. 14, no. 2, pp. 289–308, 1996. View at Scopus
  34. M. Al'Absi and D. K. Arnett, “Adrenocortical responses to psychological stress and risk for hypertension,” Biomedicine and Pharmacotherapy, vol. 54, no. 5, pp. 234–244, 2000. View at Publisher · View at Google Scholar · View at Scopus
  35. B. S. McEwen and E. Stellar, “Stress and the individual: mechanisms leading to disease,” Archives of Internal Medicine, vol. 153, no. 18, pp. 2093–2101, 1993. View at Publisher · View at Google Scholar · View at Scopus
  36. C. K. Whalen, L. D. Jamner, B. Henker, and R. J. Delfino, “Smoking and moods in adolescents with depressive and aggressive dispositions: evidence from surveys and electronic diaries,” Health Psychology, vol. 20, no. 2, pp. 99–111, 2001. View at Publisher · View at Google Scholar · View at Scopus
  37. K. T. Brady and S. C. Sonne, “The role of stress in alcohol use, alcoholism treatment, and relapse,” Alcohol Research and Health, vol. 23, no. 4, pp. 263–271, 1999. View at Scopus
  38. L. Sher, “Type D personality: the heart, stress and cortisol,” QJM, vol. 98, no. 5, pp. 323–329, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. K. R. O'Dell, K. S. Masters, G. I. Spielmans, and S. A. Maisto, “Does type-D personality predict outcomes among patients with cardiovascular disease? A meta-analytic review,” Journal of Psychosomatic Research, vol. 71, no. 4, pp. 199–206, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. S. S. Pedersen, J. Daemen, M. van de Sande et al., “Type-D personality exerts a stable, adverse effect on vital exhaustion in PCI patients treated with paclitaxel-eluting stents,” Journal of Psychosomatic Research, vol. 62, no. 4, pp. 447–453, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. J. Denollet and V. M. Conraads, “Type D personality and vulnerability to adverse outcomes in heart disease,” Cleveland Clinic Journal of Medicine, vol. 78, supplement 1, pp. S13–S19, 2011.
  42. J. J. Gross and R. W. Levenson, “Hiding feelings: the acute effects of inhibiting negative and positive emotion,” Journal of Abnormal Psychology, vol. 106, no. 1, pp. 95–103, 1997. View at Publisher · View at Google Scholar · View at Scopus
  43. S. W. Cole, M. E. Kemeny, O. B. Weitzman, M. Schoen, and P. A. Anton, “Socially inhibited individuals show heightened DTH response during intense social engagement,” Brain, Behavior, and Immunity, vol. 13, no. 2, pp. 187–200, 1999. View at Publisher · View at Google Scholar · View at Scopus
  44. M. E. Habra, W. Linden, J. C. Anderson, and J. Weinberg, “Type D personality is related to cardiovascular and neuroendocrine reactivity to acute stress,” Journal of Psychosomatic Research, vol. 55, no. 3, pp. 235–245, 2003. View at Publisher · View at Google Scholar · View at Scopus
  45. C. Carpeggiani, M. Emdin, F. Bonaguidi et al., “Personality traits and heart rate variability predict long-term cardiac mortality after myocardial infarction,” European Heart Journal, vol. 26, no. 16, pp. 1612–1617, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. M. Maes, C. Song, A. Lin et al., “The effects of psychological stress on humans: increased production of pro-inflammatory cytokines and a Th1-like response in stress-induced anxiety,” Cytokine, vol. 10, no. 4, pp. 313–318, 1998. View at Publisher · View at Google Scholar · View at Scopus
  47. W. Gerin, T. G. Pickering, L. Glynn, et al., “An historical context for behavioral models of hypertension,” Journal of Psychosomatic Research, vol. 48, no. 4-5, pp. 369–377, 2000. View at Publisher · View at Google Scholar
  48. S. B. Manuck, A. L. Kasprowicz, and M. F. Muldoon, “Behaviorally-evoked cardiovascular reactivity and hypertension: conceptual issues and potential associations,” Annals of Behavioral Medicine, vol. 12, no. 1, pp. 17–29, 1990. View at Publisher · View at Google Scholar · View at Scopus
  49. S. B. Manuck, “Cardiovascular reactivity in cardiovascular disease: ‘Once more unto the breach’,” International Journal of Behavioral Medicine, vol. 1, no. 1, pp. 4–31, 1994. View at Publisher · View at Google Scholar · View at Scopus
  50. D. L. Roter and C. K. Ewart, “Emotional inhibition in essential hypertension: obstacle to communication during medical visits?” Health Psychology, vol. 11, no. 3, pp. 163–169, 1992. View at Publisher · View at Google Scholar · View at Scopus
  51. T. van Strien, F. A. van de Laar, J. F. J. van Leeuwe et al., “The Dieting dilemma in patients with newly diagnosed type 2 diabetes: does dietary restraint predict weight gain 4 years after diagnosis?” Health Psychology, vol. 26, no. 1, pp. 105–112, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. F. X. Pi-Sunyer, “The obesity epidemic: pathophysiology and consequences of obesity,” Obesity Research, vol. 10, supplement 2, pp. 97S–104S, 2002. View at Scopus
  53. M. Buscema, E. Grossi, D. Snowdon, and P. Antuono, “Auto-contractive maps: an artificial adaptive system for data mining. An application to Alzheimer disease,” Current Alzheimer Research, vol. 5, no. 5, pp. 481–498, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. A. Villani, G. Malfatto, F. Della Rosa et al., “Disease management for heart failure patients: role of wireless technologies for telemedicine. The ICAROS project,” Giornale Italiano di Cardiologia, vol. 8, no. 2, pp. 107–114, 2007. View at Scopus
  55. G. M. Manzoni, V. Villa, A. Compare et al., “Short-term effects of a multi-disciplinary cardiac rehabilitation programme on psychological well-being, exercise capacity and weight in a sample of obese in-patients with coronary heart disease: a practice-level study,” Psychology, Health and Medicine, vol. 16, no. 2, pp. 178–189, 2011. View at Publisher · View at Google Scholar · View at Scopus
  56. A. Compare, C. Zarbo, G. M. Manzoni, et al., “Social support, depression, and heart disease: a ten year literature review,” Frontiers in Psychology, vol. 4, p. 384, 2013. View at Publisher · View at Google Scholar
  57. A. Compare, R. Proietti, D. Del Forno et al., “Vulnerable personality and takotsubo cardiomyopathy consequent to emotional stressful events: a clinical case report,” Monaldi Archives for Chest Disease, vol. 76, no. 2, pp. 99–103, 2011. View at Scopus