About this Journal Submit a Manuscript Table of Contents
Chromatography Research International
Volume 2011 (2011), Article ID 638090, 6 pages
http://dx.doi.org/10.4061/2011/638090
Research Article

Preparation of Poly(Hydroxamic Acid) for Separation of Zr/Y, Sr System

1Cyclotron Facility, Nuclear Research Centre, Atomic Energy Authority, Cairo 13759, Egypt
2Hot Lab Center, Atomic Energy Authority, Cairo, Postal Code 13759, Egypt

Received 5 November 2010; Revised 6 January 2011; Accepted 14 January 2011

Academic Editor: Antonio Martín-Esteban

Copyright © 2011 Khaled F. Hassan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Jemal, R. Siegel, E. Ward, Y. Hao, J. Xu, and M. J. Thun, “Cancer statistics,” CA: A Cancer Journal for Clinicians, vol. 59, pp. 225–249, 2009.
  2. A. J. Domb, E. G. Cravalho, and R. Langer, “Synthesis of poly(hydroxamic acid) from poly(acrylamide),” Journal of Polymer Science, Part A, vol. 26, no. 10, pp. 2623–2630, 1988. View at Publisher · View at Google Scholar
  3. Y. Isikver, D. Saraydin, and N. Sahiner, “Poly(hydroxamic acid) hydrogels from poly(acrylamide): preparation and characterization,” Polymer Bulletin, vol. 47, no. 1, pp. 71–79, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. D. Saraydin and Y. Çaldiran, “In vitro dynamic swelling behaviors of polyhydroxamic acid hydrogels in the simulated physiological body fluids,” Polymer Bulletin, vol. 46, no. 1, pp. 91–98, 2001. View at Publisher · View at Google Scholar
  5. T. S. Lee, D. W. Jeon, J. K. Kim, and S. I. Hong, “Formation of metal complex in a poly(hydroxamic acid) resin bead,” Fibers and Polymers, vol. 2, no. 1, pp. 13–17, 2001.
  6. F. Vernon, “Chelating ion exchangers—the synthesis and uses of poly(hydroxamic acid) resins,” Pure and Applied Chemistry, vol. 54, no. 11, pp. 2151–2158, 1982. View at Scopus
  7. F. Vernon and W. M. Zin, “Chelating ion-exchangers containing n-substituted hydroxylamine functional groups—part 6: sorption and separation of gold and silver by a polyhydroxamic acid,” Analytica Chimica Acta, vol. 123, pp. 309–313, 1981. View at Scopus
  8. F. Vernon and H. Eccles, “Chelating ion-exchangers containing n-substituted hydroxylamine functional groups—part IV: column separations on a hydroxamic acid resin,” Analytica Chimica Acta, vol. 83, pp. 187–193, 1976.
  9. A. Shah and S. Devi, “Separation of lead and copper on a series of chelating ion-exchange resins—part I,” The Analyst, vol. 110, no. 12, pp. 1501–1504, 1985. View at Scopus
  10. D. M. Mohammed, “Separation of uranium from neodymium in a mixture of their oxides,” The Analyst, vol. 112, pp. 1179–1181, 1987.
  11. A. Shah and S. Devi, “Poly(hydroxamic acid) chelating resins part II: separation of zinc from cadmium and of cobalt from copper and nickel,” The Analyst, vol. 112, no. 3, pp. 325–328, 1987. View at Scopus
  12. M. Z. Ab Rahman, M. L. Rahman, M. J. Haron, et al., “Preliminary study on application of sago starch based poly(hydroxamic acid) resin for extraction of lanthanide group elements from aqueous media,” Malaysian Journal of Analytical Sciences, vol. 7, no. 2, pp. 453–456, 2001.
  13. S. M. Qaim, “Cyclotron production of medical radionuclides,” in Handbook of Nuclear Chemistry, A. Vértes, S. Nagy, and Z. Klencsár, Eds., vol. 4, p. 47, Kluwer Acadmic, Dordrecht, The Netherlands, 2003.
  14. S. A. Kandil, I. Spahn, B. Scholten et al., “Excitation functions of (α,xn) reactions on Rb and Sr from threshold up to 26 MeV: possibility of production of Y, Y and Zr,” Applied Radiation and Isotopes, vol. 65, no. 5, pp. 561–568, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. H. M. Omara, K. F. Hassan, S. A. Kandil, F. E. Hegazy, and Z. A. Saleh, “Proton induced reactions on Y with particular reference to the production of the medically interesting radionuclide Zr,” Radiochimica Acta, vol. 97, no. 9, pp. 467–471, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. S. A. Kandil, B. Scholten, Z. A. Saleh, A. M. Youssef, S. M. Qaim, and H. H. Coenen, “A comparative study on the separation of radiozirconium via ion-exchange and solvent extraction techniques, with particular reference to the production of Zr and Zr in proton induced reactions on yttrium,” Journal of Radioanalytical and Nuclear Chemistry, vol. 274, no. 1, pp. 45–52, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. C. G. Leichman, K. Chansky, J. S. Macdonald et al., “Biochemical modulation of 5-fluorouacil through dihydropyrimidine dehydrogenase inhibition: a Southwest Oncology Group phase II trial of eniluracil and 5-fluorouracil in advanced resistant colorectal cancer,” Investigational New Drugs, vol. 20, no. 4, pp. 419–424, 2002. View at Publisher · View at Google Scholar
  18. F. D. S. Butement and S. M. Qaim, “New radioisotopes of niobium and molybdenum-I88 Nb,” Journal of Inorganic and Nuclear Chemistry, vol. 26, no. 9, pp. 1481–1489, 1964. View at Scopus
  19. T. Siyam, “Development of acrylamide polymers for the treatment of waste water,” Designed Monomers and Polymers, vol. 4, no. 2, pp. 107–168, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. D. Saraydin, Y. Isikver, and N. Sahiner, “Uranyl ion binding properties of poly(hydroxamic acid) hydrogels,” Polymer Bulletin, vol. 47, no. 1, pp. 81–89, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. E. R. Tompkins and S. W. Mayer, “Ion exchange as a separations method. III. Equilibrium studies of the reactions of rare earth complexes with synthetic ion exchange resins,” Journal of the American Chemical Society, vol. 69, no. 11, pp. 2859–2865, 1947. View at Scopus
  22. S. Pal, V. Ramachandhran, S. Prabhakar, P. K. Tewari, and M. Sudersanan, “Polyhydroxamic acid sorbents for uranium recovery,” Journal of Macromolecular Science, vol. 43, no. 4-5, pp. 735–747, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. N. N. Greenwood and A. Earnshaw, Chemistry of the Elements, Elsevier, Amsterdam, The Netherlands, 2nd edition, 1997.