About this Journal Submit a Manuscript Table of Contents
Case Reports in Medicine
Volume 2012 (2012), Article ID 418672, 4 pages
http://dx.doi.org/10.1155/2012/418672
Case Report

Novel BRAF Alteration in a Sporadic Pilocytic Astrocytoma

1Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
2Department of Neurology, Washington University School of Medicine, P.O. Box 8111, 660 South Euclid Avenue, St. Louis, MO 63110, USA
3Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO 63110, USA

Received 17 December 2011; Accepted 7 February 2012

Academic Editor: Mark E. Shaffrey

Copyright © 2012 Sonika Dahiya et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Listernick, J. Charrow, M. J. Greenwald, and N. B. Esterly, “Optic gliomas in children with neurofibromatosis type 1,” Journal of Pediatrics, vol. 114, no. 5, pp. 788–792, 1989. View at Scopus
  2. L. Kluwe, C. Hagel, M. Tatagiba et al., “Loss of NF1 alleles distinguish sporadic from NF1-associated pilocytic astrocytomas,” Journal of Neuropathology and Experimental Neurology, vol. 60, no. 9, pp. 917–920, 2001. View at Scopus
  3. S. Pfister, W. G. Janzarik, M. Remke et al., “BRAF gene duplication constitutes a mechanism of MAPK pathway activation in low-grade astrocytomas,” Journal of Clinical Investigation, vol. 118, no. 5, pp. 1739–1749, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. E. E. Bar, A. Lin, T. Tihan, P. C. Burger, and C. G. Eberhart, “Frequent gains at chromosome 7q34 involving BRAF in pilocytic astrocytoma,” Journal of Neuropathology and Experimental Neurology, vol. 67, no. 9, pp. 878–887, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. D. T. W. Jones, S. Kocialkowski, L. Liu et al., “Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas,” Cancer Research, vol. 68, no. 21, pp. 8673–8677, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. A. J. Sievert, E. M. Jackson, X. Gai et al., “Duplication of 7q34 in pediatric low-grade astrocytomas detected by high-density single-nucleotide polymorphism-based genotype arrays results in a novel BRAF fusion gene,” Brain Pathology, vol. 19, pp. 449–458, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Forshew, R. G. Tatevossian, A. R. J. Lawson et al., “Activation of the ERK/MAPK pathway: a signature genetic defect in posterior fossa pilocytic astrocytomas,” Journal of Pathology, vol. 218, no. 2, pp. 172–181, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Yu, H. Deshmukh, R. J. Gutmann et al., “Alterations of BRAF and HIPK2 loci predominate in sporadic pilocytic astrocytoma,” Neurology, vol. 73, no. 19, pp. 1526–1531, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. K. Jacob, S. Albrecht, C. Sollier et al., “Duplication of 7q34 is specific to juvenile pilocytic astrocytomas and a hallmark of cerebellar and optic pathway tumours,” British Journal of Cancer, vol. 101, no. 4, pp. 722–733, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. D. T. W. Jones, S. Kocialkowski, L. Liu, D. M. Pearson, K. Ichimura, and V. P. Collins, “Oncogenic RAF1 rearrangement and a novel BRAF mutation as alternatives to KIAA1549:BRAF fusion in activating the MAPK pathway in pilocytic astrocytoma,” Oncogene, vol. 28, no. 20, pp. 2119–2123, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Cin, C. Meyer, R. Herr et al., “Oncogenic FAM131B-BRAF fusion resulting from 7q34 deletion comprises an alternative mechanism of MAPK pathway activation in pilocytic astrocytoma,” Acta Neuropathologica, vol. 121, no. 6, pp. 763–774, 2011. View at Publisher · View at Google Scholar
  12. E. H. Raabe, K. S. Lim, J. M. Kim et al., “BRAF activation induces transformation and then senescence in human neural stem cells: a pilocytic astrocytoma model,” Clinical Cancer Research, vol. 17, no. 11, pp. 3590–3599, 2011. View at Publisher · View at Google Scholar
  13. J. Gronych, A. Korshunov, J. Bageritz et al., “An activated mutant BRAF kinase domain is sufficient to induce pilocytic astrocytoma in mice,” Journal of Clinical Investigation, vol. 121, no. 4, pp. 1344–1348, 2011. View at Publisher · View at Google Scholar
  14. Y. Lyustikman, H. Momota, W. Pao, and E. C. Holland, “Constitutive activation of raf-1 induces glioma formation in mice,” Neoplasia, vol. 10, no. 5, pp. 501–510, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. B. Hegedus, D. Banerjee, T. H. Yeh et al., “Preclinical cancer therapy in a mouse model of neurofibromatosis-1 optic glioma,” Cancer Research, vol. 68, no. 5, pp. 1520–1528, 2008. View at Publisher · View at Google Scholar · View at Scopus