About this Journal Submit a Manuscript Table of Contents
Case Reports in Neurological Medicine
Volume 2013 (2013), Article ID 254950, 3 pages
http://dx.doi.org/10.1155/2013/254950
Case Report

Dupuytren's Contracture Cosegregation with Limb-Girdle Muscle Dystrophy

1Latvian Biomedical Research and Study Centre, Ratsupites Street 1, Riga 1067, Latvia
2Children Clinical University Hospital, Medical Genetics Clinic, Riga 1004, Latvia
3Pauls Stradins Clinical University Hospital, Riga 1002, Latvia
4Children Clinical University Hospital, Neurology Clinic, Riga 1004, Latvia

Received 28 May 2013; Accepted 18 July 2013

Academic Editors: D. B. Fee, F. C. Henderson, and J. C. Kattah

Copyright © 2013 Baiba Lace et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. R. W. Yates and A. E. H. Emery, “A population study of adult onset limb-girdle muscular dystrophy,” Journal of Medical Genetics, vol. 22, no. 4, pp. 250–257, 1985. View at Scopus
  2. X. Q. Rosales, S. J. Moser, T. Tran et al., “Cardiovascular magnetic resonance of cardiomyopathy in limb girdle muscular dystrophy 2B and 2I,” Journal of Cardiovascular Magnetic Resonance, vol. 13, no. 1, article 39, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. D. Hicks, A. Sarkozy, N. Muelas et al., “A founder mutation in Anoctamin 5 is a major cause of limb-girdle muscular dystrophy,” Brain, vol. 134, no. 1, pp. 171–182, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Gundesli, B. Talim, P. Korkusuz et al., “Mutation in exon 1f of PLEC, leading to disruption of plectin isoform 1f, causes autosomal-recessive limb-girdle muscular dystrophy,” American Journal of Human Genetics, vol. 87, no. 6, pp. 834–841, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. S. H. Laval and K. M. D. Bushby, “Limb-girdle muscular dystrophies—from genetics to molecular pathology,” Neuropathology and Applied Neurobiology, vol. 30, no. 2, pp. 91–105, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. S. A. Greenberg, M. Salajegheh, D. P. Judge et al., “Etiology of limb girdle muscular dystrophy 1D/1E determined by laser capture microdissection proteomics,” Annals of Neurology, vol. 71, no. 1, pp. 141–145, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. M. B. Harms, R. B. Sommerville, P. Allred et al., “Exome sequencing reveals DNAJB6 mutations in dominantly-inherited myopathy,” Annals of Neurology, vol. 71, no. 3, pp. 407–416, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. G. M. Rayan and J. J. Tomasek, “Generation of contractile force by cultured Dupuytren's Disease and normal palmar fibroblasts,” Tissue and Cell, vol. 26, no. 5, pp. 747–756, 1994. View at Publisher · View at Google Scholar · View at Scopus
  9. K. E. Kamm and J. T. Stull, “Dedicated Myosin Light Chain Kinases with Diverse Cellular Functions,” Journal of Biological Chemistry, vol. 276, no. 7, pp. 4527–4530, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Hindocha, D. A. McGrouther, and A. Bayat, “Epidemiological evaluation of dupuytren's disease incidence and prevalence rates in relation to etiology,” Hand, vol. 4, no. 3, pp. 256–269, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. D. C. Ross, “Epidemiology of Dupuytren's disease,” Hand Clinics, vol. 15, no. 1, pp. 53–62, 1999. View at Scopus
  12. L. Michou, J.-L. Lermusiaux, J.-P. Teyssedou, T. Bardin, J. Beaudreuil, and E. Petit-Teixeira, “Genetics of Dupuytren's disease,” Joint Bone Spine, vol. 79, no. 1, pp. 7–12, 2012. View at Publisher · View at Google Scholar · View at Scopus
  13. F. Z. Hu, A. Nystrom, A. Ahmed et al., “Mapping of an autosomal dominant gene for Dupuytren's contracture to chromosome 16q in a Swedish family,” Clinical Genetics, vol. 68, no. 5, pp. 424–429, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. B. Shih, S. Watson, and A. Bayat, “Whole genome and global expression profiling of Dupuytren's disease: systematic review of current findings and future perspectives,” Annals of the Rheumatic Diseases, vol. 71, no. 9, pp. 1440–1447, 2012. View at Publisher · View at Google Scholar