About this Journal Submit a Manuscript Table of Contents
Case Reports in Ophthalmological Medicine
Volume 2013 (2013), Article ID 610302, 3 pages
http://dx.doi.org/10.1155/2013/610302
Case Report

Epiretinal Membrane after Laser In Situ Keratomileusis

1Denver Health Medical Center, University of Colorado, 11981 E Lake Cir, Greenwood Village, CO 80111, USA
2Asociacion para Evitar la Ceguera en Mexico, 04030 Mexico City, DF, Mexico

Received 24 January 2013; Accepted 19 March 2013

Academic Editors: J. F. Arevalo, H. Y. Chen, and C. Giusti

Copyright © 2013 Miguel Paciuc-Beja et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Mirshahi and H. Baatz, “Posterior Segment Complications of Laser in situ Keratomileusis (LASIK),” Survey of Ophthalmology, vol. 54, no. 4, pp. 433–440, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. J. F. Arevalo, E. Ramirez, E. Suarez et al., “Incidence of vitreoretinal pathologic conditions within 24 months after laser in situ keratomileusis,” Ophthalmology, vol. 107, no. 2, pp. 258–262, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Loewenstein, M. Goldstein, and M. Lazar, “Retinal pathology occurring after excimer laser surgery or phakic intraocular lens implantation: evaluation of possible relationship,” Survey of Ophthalmology, vol. 47, no. 2, pp. 125–135, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. M. W. Johnson, “Posterior vitreous detachment: evolution and complications of its early stages,” The American Journal of Ophthalmology, vol. 149, no. 3, pp. 371.e1–382.e1, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. J. D. Luna, M. N. Artal, V. E. Reviglio, M. Pelizzari, H. Diaz, and C. P. Juarez, “Vitreoretinal alterations following laser in situ keratomileusis: clinical and experimental studies,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 239, no. 6, pp. 416–423, 2001. View at Scopus
  6. A. Mirshahi, D. Schöpfer, D. Gerhardt, E. Terzi, T. Kasper, and T. Kohnen, “Incidence of posterior vitreous detachment after laser in situ keratomileusis,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 244, no. 2, pp. 149–153, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. J. C. Gavrilov, T. Gaujoux, M. Sellam, L. Laroche, and V. Borderie, “Occurrence of posterior vitreous detachment after femtosecond laser in situ keratomileusis: ultrasound evaluation,” Journal of Cataract and Refractive Surgery, vol. 37, no. 7, pp. 1300–1304, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. N. Kasetsuwan, R. T. Pangilinan, L. L. Moreira et al., “Real time intraocular pressure and lamellar corneal flap thickness in keratomileusis,” Cornea, vol. 20, no. 1, pp. 41–44, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. R. R. Krueger, T. Seiler, T. Gruchman, M. Mrochen, and M. S. Berlin, “Stress wave amplitudes during laser surgery of the cornea,” Ophthalmology, vol. 108, no. 6, pp. 1070–1074, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. J. M. Ruiz-Moreno and J. L. Alió, “Incidence of retinal disease following refractive surgery in 9,239 eyes,” Journal of Refractive Surgery, vol. 19, no. 5, pp. 534–547, 2003. View at Scopus