Abstract

Retroodontoid pseudotumor (ROP) is a nonneoplasic lesion of unknown etiology, commonly associated with inflammatory conditions, and the term of pannus is usually used. Less frequently, ROP formation can develop with other noninflammatory entities, with atlantoaxial instability as most accepted pathophysiological mechanism for posttraumatic or degenerative ROP. As it can clinically and radiologically mimic a malignant tumor, it is paramount for the radiologist to know this entity. Magnetic resonance imaging is the modality of choice to reveal the possible severe complication of ROP in the form of a compressive myelopathy of the upper cervical cord. The purpose of the surgical treatment is the regression or complete disappearance of ROP, with posterior decompression by laminectomy and posterior C1-C2 or occipitocervical fixation. We present the case of an elderly patient with retroodontoid soft tissue mass secondary to a chronic atlantoaxial instability on os odontoideum, an extremely rare cause of ROP. The patient developed a posttraumatic cervical myelopathy related to the decompensation of this C1-C2 instability responsible for the formation of a compressive ROP. We will overview the retroodontoid pseudotumor and its differential diagnosis.

1. Introduction

Retroodontoid pseudotumor (ROP) is an entity that can mimic malignant tumors and is from uncertain etiology. Some consider it as a low-grade fibrosarcoma. ROP are mainly related to infectious processes and less frequently to inflammatory disorders. ROP might have neurological complications due to mass effect on the spinal cord.

2. Case Description

A 77-year-old female patient was admitted in our institution following a ground-level fall due to relatively sudden grade 3-4 right hemiparesis with lower limb predominance.

This patient was not known for any systemic disease, no rheumatoid arthritis, or other joint-related generalized disease.

An initial enhanced CT was performed for the suspicion of an ischemic stroke. The exam revealed a smooth and well-corticated bone ossicle measuring 14 mm and located superiorly to the odontoid process corresponding to an os odontoideum (Figures 1(a)–1(c)). The ossicle was associated with an atlantoaxial subluxation and with the posterior wall of 14 mm on spinal canal (Figures 1(e) and 1(f), white lines) that has increased since a previous CT 8 years ago. The late enhanced phase showed an intracanal hyperattenuated but no enhancing pseudomass situated just posterior to the ossicle (Figure 1(d)).

A complementary cervical enhanced MRI with administration of Gadolinium confirmed a well-corticated ossicle and demonstrated a tissular retroodontoid process (Figures 2(a) and 2(b)). The tissue component showed a low signal on T1- and T2-weighted images and no enhancement (Figure 2(g)), compatible with a ROP. The main diagnosis was a noninflammatory ROP developed on atlantoaxial instability, secondary to an os odontoideum. The main differential diagnosis was pseudoarthrosis of an old fracture of the dens of axis. Inflammatory arthritis such as gout, rheumatoid, or psoriatic arthritis was suggested as differential diagnosis, but less likely because of the negative history of those diseases.

There was no enlargement of space between this os odontoideum and the anterior arch of C1 (Figure 2(e)). A subcentimetric geode, in low signal on T1-weighted images and enhancement after contrast administration, was seen in the posterior dens basis of C2 (Figures 2(b) and 2(c)). The pseudotumor indenting into cervicomedullary cord and resulting in cord compression is shown (Figure 2(a)), with cervical myelopathy seen in high signal on T2-weighted images in sagittal plane (Figure 2(d)).

Given the severity of the radiological findings and the clinical impact due to spinal cord compression and the life-threatening risk, patient was treated with cervical posterior screw fixation and a decompressive laminectomy at C1-C2 level (Figures 3(a)–3(d)). Unenhanced CT after posterior C1–C2 shows posterior cervical fixation and spinal canal decompression by laminectomy. The intracanal ROP is not removed but regressed in size in each postoperative CT compared to preoperative CT (Figures 4(a)4(d)).

The patient showed a progressive improvement of her neurological recovery, with complete neurological recovery 6 months after surgery. In the postoperative follow-up, entire cervical spine showed marked degenerative changes, best viewed on postoperative cervical spine X-rays (Figures 5(a) and 5(b)) as disco-uncarthrosis (white arrowheads), interarticular posterior arthrosis (black arrowheads), and anterior marginal osteophytosis (black-framed white arrowheads).

3. Discussion

The etiology of retroodontoid pseudotumor (ROP), which can mimic malignant tumors, is unknown. Some authors believe that this entity is a low-grade fibrosarcoma [1]. When pseudotumors are related to an infectious process, the more frequent encountered organisms are mycobacteria, mycoplasma, Epstein-Barr virus, actinomycetes, and nocardiae. The noninfectious inflammatory ROP, also named pannus or phantom tumors [2], is a rare nonneoplasic reactive inflammatory granulation tissue at the craniovertebral junction typically arising from the synovium around the dens and usually associated with rheumatoid arthritis [35], psoriatic arthritis [6], or gout [7]. Less frequently, the noninflammatory and noninfectious entities with predisposing atlantoaxial instability (AAI) can be associated with a ROP, as os odontoideum, posttraumatic pseudoarthrosis of the odontoid fracture, and degenerative retroodontoid cysts [8]. Other entities can mimic ROP as amyloidosis [911], pigmented villonodular synovitis [12], epidural lipomatosis [13], and idiopathic skeletal hyperostosis [14, 15] (Table 1).

In 2004, Goel A. et al. identified that ROP indicated atlantoaxial instability (AAI) [2]. The chronic mechanical stress exerted by the AAI induces repeated tears and transverse ligamentous hypertrophy with formation of reactive fibrous granulation tissue. Patients are usually asymptomatic or can report chronic cervical pain. In more advanced and severe stage, ROP could cause cervical spinal cord compression with neurological symptoms. Occasionally, an added event can decompensate the clinical condition, like ground-level fall in our case. Pathophysiologically, noninflammatory ROP consists of fibrocartilaginous tissue between the odontoid process and the anterior arch of the C1 or between the dens and the transversal ligament [2, 16]. Thus, despite the lack of histological findings, the clinical and radiological features of our case are consistent with a noninflammatory cause. Tanaka et al. have classified ROP into 3 types, according to the etiology and MRI findings. Type 1 is the classical and common ROP, caused by AAI, and is mainly associated with rheumatoid arthritis. Type 2 shows similar MRI findings to type 1, but it is associated with spondylosis or ankylosis of the cervical segment and ossification of the anterior longitudinal ligament. In type 3, ROP is sustained by a C2-C3 disc herniation, which penetrates the posterior longitudinal ligament and migrates upward to the retroodontoid space [17].

X-rays analysis allows estimating of the atlantoaxial instability, usually with dynamic study in flexion and extension. The radiographic characteristics as ossification of the anterior longitudinal ligament and ankylosis of the adjacent segments seem to be risk factors for the formation of a ROP [18]. Distance from the posterior border of the odontoid process to the anterior border of the posterior arch of C1 can also be assessed in order to estimate the space available for spinal cord (SAC). A typical MRI finding of noninflammatory ROP is a hypo- or isointense area on T1-weighted images and an area of low or mixed intensity on T2-weighted images. ROP typically demonstrates no enhancement after gadolinium administration [19].

The surgical management of ROP aims to restore the AII and to relieve the mechanical stress at the C1-C2 junction, with spontaneous regression of ROP. Many cases report the complete disappearance of this degenerative and noninflammatory ROP following posterior C1–C2 fixation [3, 16, 2022]. In our case, the patient showed a progressive regression of the size of the ROP on three postoperative CT scans (Figure 4) and improvement of her neurological recovery during, with complete recovery 6 months after surgery. The most used and recommended surgical procedures, with or without atlantoaxial subluxation, are the combination of spinal canal decompression by laminectomy and a posterior C1–C2 or occipitocervical fixation with transarticular screws, without removal of the intracanal ROP [2]. Tanaka et al. proposed the C1-C2 fixation with laminectomy as surgical treatment of types 1 and 2 [17].

In this case, os odontoideum is the cause for the AII with ROP. This bone ossicle is situated superiorly to the dens of axis and differs morphologically from persistent ossiculum terminale or from odontoid fracture. According to the congenital hypothesis, it corresponds to a congenital anatomic variant, due to a failure of fusion of dens center with the body of C2. The other current hypothesis supports a traumatic origin, corresponding to an odontoid process fracture type II of Anderson and Alonso classification, sustained by history of traumatism in many patients [23]. In our case, the traumatic hypothesis is more likely because of the many degenerative changes associated. On cervical spine CT, the gap between the os odontoideum and the odontoid process usually extends above the level of the superior axis facets, as in our case. Even though extremely rare, os odontoideum could be associated with atlantoaxial instability and lead to ROP [24]. There are two main types. First, the orthotopic type shows a normal position, merged with the anterior arch of C1 and a wide gap between the body of C2 and os odontoideum, as in our case. Second, the dystopic os odontoideum is cranially displaced usually fused to the basion of the clivus. This smooth small ossicle is of variable sizes, around half the size of the normal dens and associated with hypertrophied and rounded anterior arch of C1. The development of the ROP in the C2 fracture is most commonly seen in elderly population after a low-energy traumatism, with high mortality. Pseudoarthrosis of dens fracture is then usually seen in patients with history of cervical spine traumatism and osteoporosis [25].

4. Conclusion

We present an extremely rare case of ROP, confirmed by surgery, secondary to chronic atlantoaxial instability on os odontoideum. Our case, being the fifth reported in the literature, gives us the opportunity to remind the reader of the recent knowledge about this anatomical variant suggesting a traumatic etiology rather than a congenital source.

Conflicts of Interest

The authors declare that they have no conflicts of interest.