About this Journal Submit a Manuscript Table of Contents
Case Reports in Transplantation
Volume 2012 (2012), Article ID 825289, 6 pages
http://dx.doi.org/10.1155/2012/825289
Case Report

Therapeutic Potential of Autologous Stem Cell Transplantation for Cerebral Palsy

1StemOne Biologicals Pvt. Ltd., Gat No. 801, Urwade, Gadewadi, Tal-Mulshi, Pune 412108, India
2Shitole Hospital, Rajarampuri 1st Lane, Near Janata Bazar, Kolhapur 416008, India

Received 1 June 2012; Accepted 2 August 2012

Academic Editors: C. Costa and M. R. Moosa

Copyright © 2012 Chaitanya Purandare et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Mutch, E. Alberman, B. Hagberg, K. Kodama, and M. V. Perat, “Cerebral palsy epidemiology: where are we now and where are we going?” Developmental Medicine and Child Neurology, vol. 34, no. 6, pp. 547–551, 1992. View at Scopus
  2. P. Rosenbaum, N. Paneth, A. Leviton, M. Goldstein, and M. Bax, “A report: the definition and classification of cerebral palsy April 2006,” Developmental Medicine and Child Neurology, vol. 49, no. 2, pp. 8–14, 2007. View at Scopus
  3. J. M. Weimann, C. A. Charlton, T. R. Brazelton, R. C. Hackman, and H. M. Blau, “Contribution of transplanted bone marrow cells to Purkinje neurons in human adult brains,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 4, pp. 2088–2093, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. E. Mezey, K. J. Chandross, G. Harta, R. A. Maki, and S. R. McKercher, “Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow,” Science, vol. 290, no. 5497, pp. 1779–1782, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. D. Woodbury, E. J. Schwarz, D. J. Prockop, and I. B. Black, “Adult rat and human bone marrow stromal cells differentiate into neurons,” Journal of Neuroscience Research, vol. 61, pp. 364–370, 2000.
  6. D. H. Park, C. V. Borlongan, A. E. Willing et al., “Human umbilical cord blood cell grafts for brain ischemia,” Cell Transplantation, vol. 18, no. 9, pp. 985–998, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Wu, Z. Sun, H. S. Sun et al., “Intravenously administered bone marrow cells migrate to damaged brain tissue and improve neural function in ischemic rats,” Cell Transplantation, vol. 16, no. 10, pp. 993–1005, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Deda, M. C. Inci, A. Kurekçi et al., “Treatment of chronic spinal cord injured patients with autologous bone marrow-derived hematopoietic stem cell transplantation: 1-year follow-up,” Cytotherapy, vol. 10, no. 6, pp. 565–574, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. F. Callera and C. M. T. P. De Melo, “Magnetic resonance tracking of magnetically labeled autologous bone marrow CD34+ cells transplanted into the spinal cord via lumbar puncture technique in patients with chronic spinal cord injury: CD34+ cells' migration into the injured site,” Stem Cells and Development, vol. 16, no. 3, pp. 461–466, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. F. Callera and R. X. Do Nascimento, “Delivery of autologous bone marrow precursor cells into the spinal cord via lumbar puncture technique in patients with spinal cord injury: a preliminary safety study,” Experimental Hematology, vol. 34, no. 2, pp. 130–131, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. A. C. Lepore, A. Bakshi, S. A. Swanger, M. S. Rao, and I. Fischer, “Neural precursor cells can be delivered into the injured cervical spinal cord by intrathecal injection at the lumbar cord,” Brain Research, vol. 1045, no. 1-2, pp. 206–216, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Li, M. Chopp, J. Chen et al., “Intrastriatal transplantation of bone marrow nonhematopoietic cells improves functional recovery after stroke in adult mice,” Journal of Cerebral Blood Flow and Metabolism, vol. 20, no. 9, pp. 1311–1319, 2000. View at Scopus
  13. G. C. Kopen, D. J. Prockop, and D. G. Phinney, “Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 19, pp. 10711–10716, 1999. View at Publisher · View at Google Scholar · View at Scopus
  14. E. Mezey, S. Key, G. Vogeslsang, SzalayovaI, G. D. Lange, and B. Crain, “Transplanted bone marrow generates new neurons in human brains,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 3, pp. 1364–1369, 2003. View at Publisher · View at Google Scholar
  15. S. J. Korzeniewski, G. Birbeck, M. C. DeLano, M. J. Potchen, and N. Paneth, “A systematic review of neuroimaging for cerebral palsy,” Journal of Child Neurology, vol. 23, no. 2, pp. 216–227, 2008. View at Publisher · View at Google Scholar · View at Scopus