About this Journal Submit a Manuscript Table of Contents
Cardiology Research and Practice
Volume 2012 (2012), Article ID 754181, 9 pages
http://dx.doi.org/10.1155/2012/754181
Clinical Study

Eicosapentaenoic Acid Supplementation Changes Fatty Acid Composition and Corrects Endothelial Dysfunction in Hyperlipidemic Patients

1Second Department of Internal Medicine, Endocrinology, Diabetes and Metabolism, Hematology and Rheumatology, University of the Ryukyus Graduate School of Medicine, Okinawa 903-0215, Japan
2Diabetes and Life-Style Related Disease Center, Tomishiro Chuo Hospital, Okinawa 901-0243, Japan
3Department of Cardio-Diabetes Medicine, The University of Tokushima Graduate School of Health Biosciences, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
4Cardiovascular Division, Naha City Hospital, Okinawa 902-8511, Japan
5Cardiovascular Division, Tomishiro Chuo Hospital, Okinawa 901-0243, Japan
6Cardiovascular Division, Shonan Hospital, Okinawa 904-0034, Japan
7Heart Center, Wajiro Hospital, Fukuoka 811-0213, Japan
8Department of Clinical Pharmacology and Therapeutics, University of the Ryukyus Graduate School of Medicine, Okinawa 903-0215, Japan
9Department of Cardiovascular Medicine, The University of Tokushima Graduate School of Health Biosciences, 3-18-15 Kuramoto, Tokushima 770-8503, Japan

Received 31 July 2012; Accepted 11 September 2012

Academic Editor: Chim Choy Lang

Copyright © 2012 Ken Yamakawa et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. A. Dolecek, “Epidemiological evidence of relationships between dietary polyunsaturated fatty acids and mortality in the Multiple Risk Factor Intervention Trial,” Proceedings of the Society for Experimental Biology and Medicine, vol. 200, no. 2, pp. 177–182, 1992. View at Scopus
  2. GISSI-Prevenzione Investigators, “Dietary supplementation with N-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI-Prevenzione trial,” The Lancet, vol. 354, no. 9177, pp. 447–455, 1999. View at Publisher · View at Google Scholar · View at Scopus
  3. H. Iso, K. M. Rexrode, M. J. Stampfer et al., “Intake of fish and omega-3 fatty acids and risk of stroke in women,” Journal of the American Medical Association, vol. 285, no. 3, pp. 304–312, 2001. View at Scopus
  4. H. Iso, M. Kobayashi, J. Ishihara et al., “Intake of fish and n3 fatty acids and risk of coronary heart disease among Japanese: the Japan Public Health Center-Based (JPHC) study cohort I,” Circulation, vol. 113, no. 2, pp. 195–202, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. C. Wang, W. S. Harris, M. Chung et al., “n-3 Fatty acids from fish or fish-oil supplements, but not α-linolenic acid, benefit cardiovascular disease outcomes in primary- and secondary-prevention studies: a systematic review,” American Journal of Clinical Nutrition, vol. 84, no. 1, pp. 5–17, 2006. View at Scopus
  6. M. Yokoyama, H. Origasa, M. Matsuzaki et al., “Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open-label, blinded endpoint analysis,” The Lancet, vol. 369, no. 9567, pp. 1090–1098, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. Saito, M. Yokoyama, H. Origasa et al., “Effects of EPA on coronary artery disease in hypercholesterolemic patients with multiple risk factors: sub-analysis of primary prevention cases from the Japan EPA Lipid Intervention Study (JELIS),” Atherosclerosis, vol. 200, no. 1, pp. 135–140, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Sato, Y. Katsuki, K. Fukuhara et al., “Effects of highly purified ethyl all-cis-5,8,11,14,17-icosapentaenoate (EPA-E) on rabbit platelets,” Biological and Pharmaceutical Bulletin, vol. 16, no. 4, pp. 362–367, 1993. View at Scopus
  9. K. Tsuruta, H. Ogawa, H. Yasue et al., “Effect of purified eicosapentaenoate ethyl ester on fibrinolytic capacity in patients with stable coronary artery disease and lower extremity ischaemia,” Coronary Artery Disease, vol. 7, no. 11, pp. 837–842, 1996. View at Scopus
  10. Y. Adkins and D. S. Kelley, “Mechanisms underlying the cardioprotective effects of omega-3 polyunsaturated fatty acids,” Journal of Nutritional Biochemistry, vol. 21, no. 9, pp. 781–792, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Zampelas, D. B. Panagiotakos, C. Pitsavos et al., “Fish consumption among healthy adults is associated with decreased levels of inflammatory markers related to cardiovascular disease: the ATTICA study,” Journal of the American College of Cardiology, vol. 46, no. 1, pp. 120–124, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. R. Wall, R. P. Ross, G. F. Fitzgerald, and C. Stanton, “Fatty acids from fish: the anti-inflammatory potential of long-chain omega-3 fatty acids,” Nutrition Reviews, vol. 68, no. 5, pp. 280–289, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Leaf, C. M. Albert, M. Josephson et al., “Prevention of fatal arrhythmias in high-risk subjects by fish oil n-3 fatty acid intake,” Circulation, vol. 112, no. 18, pp. 2762–2768, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. L. Calò, L. Bianconi, F. Colivicchi et al., “N-3 fatty acids for the prevention of atrial fibrillation after coronary artery bypass surgery: a randomized, controlled trial,” Journal of the American College of Cardiology, vol. 45, no. 10, pp. 1723–1728, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Egert and P. Stehle, “Impact of n-3 fatty acids on endothelial function: results from human interventions studies,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 14, no. 2, pp. 121–131, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Tagawa, H. Shimokawa, T. Tagawa, M. Kuroiwa-Matsumoto, Y. Hirooka, and A. Takeshita, “Long-term treatment with eicosapentaenoic acid augments both nitric oxide-mediated and non-nitric oxide-mediated endothelium-dependent forearm vasodilatation in patients with coronary artery disease,” Journal of Cardiovascular Pharmacology, vol. 33, no. 4, pp. 633–640, 1999. View at Publisher · View at Google Scholar · View at Scopus
  17. T. Okumura, Y. Fujioka, S. Morimoto et al., “Eicosapentaenoic acid improves endothelial function in hypertriglyceridemic subjects despite increased lipid oxidizability,” American Journal of the Medical Sciences, vol. 324, no. 5, pp. 247–253, 2002. View at Scopus
  18. D. S. Celermajer, K. E. Sorensen, V. M. Gooch et al., “Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis,” The Lancet, vol. 340, no. 8828, pp. 1111–1115, 1992. View at Publisher · View at Google Scholar · View at Scopus
  19. G. Arcaro, B. M. Zenere, D. Travia et al., “Non-invasive detection of early endothelial dysfunction in hypercholesterolaemic subjects,” Atherosclerosis, vol. 114, no. 2, pp. 247–254, 1995. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Shimabukuro, N. Higa, T. Asahi et al., “Hypoadiponectinemia is closely linked to endothelial dysfunction in man,” Journal of Clinical Endocrinology and Metabolism, vol. 88, no. 7, pp. 3236–3240, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Shimabukuro, N. Higa, I. Chinen, K. Yamakawa, and N. Takasu, “Effects of a single administration of acarbose on postprandial glucose excursion and endothelial dysfunction in type 2 diabetic patients: a randomized crossover study,” Journal of Clinical Endocrinology and Metabolism, vol. 91, no. 3, pp. 837–842, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Shimabukuro, I. Chinen, N. Higa, N. Takasu, K. Yamakawa, and S. Ueda, “Effects of dietary composition on postprandial endothelial function and adiponectin concentrations in healthy humans: a crossover controlled study,” American Journal of Clinical Nutrition, vol. 86, no. 4, pp. 923–928, 2007. View at Scopus
  23. T. Nakano, Y. Tokita, T. Nagamine et al., “Measurement of serum remnant-like lipoprotein particle-triglyceride (RLP-TG) and RLP-TG/total TG ratio using highly sensitive triglyceride assay reagent,” Clinica Chimica Acta, vol. 412, no. 1-2, pp. 71–78, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. H. Itakura, M. Yokoyama, M. Matsuzaki et al., “Relationships between plasma fatty acid composition and coronary artery disease,” Journal of Atherosclerosis and Thrombosis, vol. 18, no. 2, pp. 99–107, 2011. View at Scopus
  25. K. Hamazaki, M. Itomura, M. Huan et al., “n-3 long-chain FA decrease serum levels of TG and remnant-like particle-cholesterol in humans,” Lipids, vol. 38, no. 4, pp. 353–358, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. T. Heitzer, T. Schlinzig, K. Krohn, T. Meinertz, and T. Münzel, “Endothelial dysfunction, oxidative stress, and risk of cardiovascular events in patients with coronary artery disease,” Circulation, vol. 104, no. 22, pp. 2673–2678, 2001. View at Scopus
  27. I. Chinen, M. Shimabukuro, K. Yamakawa et al., “Vascular lipotoxicity: endothelial dysfunction via fatty acid-induced reactive oxygen species overproduction in obese Zucker diabetic fatty rats,” Endocrinology, vol. 148, pp. 160–165, 2007.
  28. J. P. Mtabaji, M. S. Manku, and D. F. Horrobin, “Abnormalities in dihomo-γ-linolenic acid release in the pathogenesis of hypertension,” American Journal of Hypertension, vol. 6, no. 6, pp. 458–462, 1993. View at Scopus
  29. S. G. West, A. L. Krick, L. C. Klein et al., “Effects of diets high in walnuts and flax oil on hemodynamic responses to stress and vascular endothelial function,” Journal of the American College of Nutrition, vol. 29, pp. 595–603, 2010.