About this Journal Submit a Manuscript Table of Contents
Cardiology Research and Practice
Volume 2013 (2013), Article ID 976976, 16 pages
http://dx.doi.org/10.1155/2013/976976
Review Article

Comparison of Atrial Fibrillation in the Young versus That in the Elderly: A Review

1Unit of Cardiac Physiology, Cardiovascular Research Group, 3rd Floor, Core Technology Facility, The University of Manchester, M139PL, Grafton Street, Manchester M13 9NT, UK
2Manchester Heart Centre, Manchester Royal Infirmary, Oxford Road, Manchester M13 9WPL, UK

Received 12 June 2012; Accepted 9 August 2012

Academic Editor: Evren Caglayan

Copyright © 2013 Rajiv Sankaranarayanan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Miyasaka, M. E. Barnes, B. J. Gersh, et al., “Secular trends in incidence of atrial fibrillation in Olmsted County, Minnesota, 1980 to 2000, and implications on the projections for future prevalence,” Circulation, vol. 114, no. 2, pp. 119–125, 2006.
  2. H. Stefansdottir, T. Aspelund, V. Gudnason, et al., “Trends in the incidence and prevalence of atrial fibrillation in Iceland and future projections,” Europace, vol. 13, no. 8, pp. 1110–1117, 2011.
  3. H. Rutzen-Lopez, V. Khanna, and M. R. Reynolds, “Atrial fibrillation: epidemiology, prognosis and therapy,” Minerva Medica, vol. 102, no. 3, pp. 187–207, 2011. View at Scopus
  4. K. Abusada, S. B. Sharma, R. Jaldai, et al., “Epidemiology and management of new-onset atrial fibrillation,” American Journal of Managed Care, vol. 10, supplement, pp. S50–S57, 2004.
  5. A. S. Go, E. M. Hylek, K. A. Phillips et al., “Prevalence of diagnosed atrial fibrillation in adults: national implications for rhythm management and stroke prevention: the anticoagulation and risk factors in atrial fibrillation (ATRIA) study,” Journal of the American Medical Association, vol. 285, no. 18, pp. 2370–2375, 2001. View at Scopus
  6. E. J. Benjamin, D. Levy, S. M. Vaziri, R. B. D'Agostino, A. J. Belanger, and P. A. Wolf, “Independent risk factors for atrial fibrillation in a population-based cohort. The Framingham Heart Study,” Journal of the American Medical Association, vol. 271, no. 11, pp. 840–844, 1994. View at Publisher · View at Google Scholar · View at Scopus
  7. D. M. Lloyd-Jones, T. J. Wang, E. P. Leip et al., “Lifetime risk for development of atrial fibrillation: the framingham heart study,” Circulation, vol. 110, no. 9, pp. 1042–1046, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Heeringa, D. A. M. Van Der Kuip, A. Hofman et al., “Prevalence, incidence and lifetime risk of atrial fibrillation: the Rotterdam study,” European Heart Journal, vol. 27, no. 8, pp. 949–953, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. B. M. Psaty, T. A. Manolio, L. H. Kuller et al., “Incidence of and risk factors for atrial fibrillation in older adults,” Circulation, vol. 96, no. 7, pp. 2455–2461, 1997. View at Scopus
  10. F. D. R. Hobbs, D. A. Fitzmaurice, J. Mant et al., “A randomised controlled trial and cost-effectiveness study of systematic screening (targeted and total population screening) versus routine practice for the detection of atrial fibrillation in people aged 65 and over. The SAFE study,” Health Technology Assessment, vol. 9, no. 40, pp. 3–5, 2005. View at Scopus
  11. W. Evans and P. Swann, “Lone auricular fibrillation,” British Heart Journal, vol. 16, pp. 189–194, 1954.
  12. V. Fuster, L. E. Ryden, D. S. Cannom, et al., “ACC/AHA/ESC 2006 Guidelines for the Management of Patients with Atrial Fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the European Society of Cardiology Committee for Practice Guidelines (Writing Committee to Revise the 2001 Guidelines for the Management of Patients With Atrial Fibrillation): developed in collaboration with the European Heart Rhythm Association and the Heart Rhythm Society,” Circulation, vol. 114, no. 7, pp. e257–e354.
  13. F. N. Brand, R. D. Abbott, W. B. Kannel, and P. A. Wolf, “Characteristics and prognosis of lone atrial fibrillation. 30 year follow-up in the Framingham study,” Journal of the American Medical Association, vol. 254, no. 24, pp. 3449–3453, 1985. View at Scopus
  14. A. Jahangir, V. Lee, P. A. Friedman et al., “Long-term progression and outcomes with aging in patients with lone atrial fibrillation: a 30-year follow-up study,” Circulation, vol. 115, no. 24, pp. 3050–3056, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. L. Frost, “Lone atrial fibrillation: good, bad, or ugly?” Circulation, vol. 115, no. 24, pp. 3040–3041, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. S. L. Kopecky, B. J. Gersh, M. D. McGoon et al., “Lone atrial fibrillation in elderly persons: a marker for cardiovascular risk,” Archives of Internal Medicine, vol. 159, no. 10, pp. 1118–1122, 1999. View at Publisher · View at Google Scholar · View at Scopus
  17. B. A. Schoonderwoerd, M. D. Smit, L. Pen, and I. C. Van Gelder, “New risk factors for atrial fibrillation: causes of 'not-so-lone atrial fibrillation',” Europace, vol. 10, no. 6, pp. 668–673, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. D. G. Wyse, “Idiopathic atrial fibrillation: a rose by any other name?” Europace, vol. 14, no. 2, pp. 151–152, 2012.
  19. D. Kozlowski, S. Budrejko, G. Y. H. Lip et al., “Lone atrial fibrillation: what do we know?” Heart, vol. 96, no. 7, pp. 498–503, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. B. Weijs, R. Pisters, R. Nieuwlaat, et al., “Idiopathic atrial fibrillation revisited in a large longitudinal clinical cohort,” Europace, vol. 14, no. 2, pp. 184–190, 2012.
  21. S. L. Kopecky, B. J. Gersh, and M. D. McGoon, “The natural history of lone atrial fibrillation. A population-based study over three decades,” New England Journal of Medicine, vol. 317, no. 11, pp. 669–674, 1987. View at Scopus
  22. C. D. Furberg, B. M. Psaty, T. A. Manolio et al., “Prevalence of atrial fibrillation in elderly subjects (the Cardiovascular Health Study),” American Journal of Cardiology, vol. 74, no. 3, pp. 236–241, 1994. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Lévy, M. Maarek, P. Coumel et al., “Characterization of different subsets of atrial fibrillation in general practice in France: the ALFA study,” Circulation, vol. 99, no. 23, pp. 3028–3035, 1999. View at Scopus
  24. L. Wolff, “Familial auricular fibrillation,” The New England Journal of Medicine, vol. 229, pp. 396–398, 1943.
  25. D. Darbar, K. J. Herron, J. D. Ballew et al., “Familial atrial fibrillation is a genetically heterogeneous disorder,” Journal of the American College of Cardiology, vol. 41, no. 12, pp. 2185–2192, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. P. T. Ellinor, D. M. Yoerger, J. N. Ruskin, and C. A. MacRae, “Familial aggregation in lone atrial fibrillation,” Human Genetics, vol. 118, no. 2, pp. 179–184, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. C. S. Fox, H. Parise, R. B. D'Agostino et al., “Parental atrial fibrillation as a risk factor for atrial fibrillation in offspring,” Journal of the American Medical Association, vol. 291, no. 23, pp. 2851–2855, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. R. Brugada, T. Tapscott, G. Z. Czernuszewicz et al., “Identification of a genetic locus for familial atrial fibrillation,” New England Journal of Medicine, vol. 336, no. 13, pp. 905–911, 1997. View at Publisher · View at Google Scholar · View at Scopus
  29. M. F. Sinner, P. T. Ellinor, T. Meitinger, E. J. Benjamin, and S. Kääb, “Genome-wide association studies of atrial fibrillation: past, present, and future,” Cardiovascular Research, vol. 89, no. 4, pp. 701–709, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. Y. H. Chen, S. J. Xu, S. Bendahhou et al., “KCNQ1 gain-of-function mutation in familial atrial fibrillation,” Science, vol. 299, no. 5604, pp. 251–254, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. Yang, M. Xia, Q. Jin et al., “Identification of a KCNE2 gain-of-function mutation in patients with familial atrial fibrillation,” American Journal of Human Genetics, vol. 75, no. 5, pp. 899–905, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Xia, Q. Jin, S. Bendahhou et al., “A Kir2.1 gain-of-function mutation underlies familial atrial fibrillation,” Biochemical and Biophysical Research Communications, vol. 332, no. 4, pp. 1012–1019, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. T. M. Olson, A. E. Alekseev, X. K. Liu et al., “Kv1.5 channelopathy due to KCNA5 loss-of-function mutation causes human atrial fibrillation,” Human Molecular Genetics, vol. 15, no. 14, pp. 2185–2191, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. L. Y. Chen, J. D. Ballew, K. J. Herron, R. J. Rodeheffer, and T. M. Olson, “A common polymorphism in SCN5A is associated with lone atrial fibrillation,” Clinical Pharmacology and Therapeutics, vol. 81, no. 1, pp. 35–41, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. M. H. Gollob, D. L. Jones, A. D. Krahn et al., “Somatic mutations in the connexin 40 gene (GJA5) in atrial fibrillation,” New England Journal of Medicine, vol. 354, no. 25, pp. 2677–2688, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. T. M. Olson, A. E. Alekseev, C. Moreau, et al., “KATP channel mutation confers risk for vein of Marshall adrenergic atrial fibrillation,” Nature Clinical Practice Cardiovascular Medicine, vol. 4, no. 2, pp. 110–116, 2007.
  37. P. O. Ettinger, C. F. Wu, C. De La Cruz Jr., A. B. Weisse, S. S. Ahmed, and T. J. Regan, “Arrhythmias and the 'holiday heart': alcohol associated cardiac rhythm disorders,” American Heart Journal, vol. 95, no. 5, pp. 555–562, 1978. View at Scopus
  38. C. E. B. Balbão, A. A. V. de Paola, and G. Fenelon, “Effects of alcohol on atrial fibrillation: myths and truths,” Therapeutic Advances in Cardiovascular Disease, vol. 3, no. 1, pp. 53–63, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. S. R. Lowenstein, P. A. Gabow, and J. Cramer, “The role of alcohol in new-onset atrial fibrillation,” Archives of Internal Medicine, vol. 143, no. 10, pp. 1882–1885, 1983. View at Publisher · View at Google Scholar · View at Scopus
  40. K. J. Mukamal, B. M. Psaty, P. M. Rautaharju et al., “Alcohol consumption and risk and prognosis of atrial fibrillation among older adults: the Cardiovascular Health Study,” American Heart Journal, vol. 153, no. 2, pp. 260–266, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. G. M. Marcus, L. M. Smith, D. Whiteman et al., “Alcohol intake is significantly associated with atrial flutter in patients under 60 years of age and a shorter right atrial effective refractory period,” Pacing and Clinical Electrophysiology, vol. 31, no. 3, pp. 266–272, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. N. Wanahita, F. H. Messerli, S. Bangalore, A. S. Gami, V. K. Somers, and J. S. Steinberg, “Atrial fibrillation and obesity—results of a meta-analysis,” American Heart Journal, vol. 155, no. 2, pp. 310–315, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. T. J. Wang, H. Parise, D. Levy et al., “Obesity and the risk of new-onset atrial fibrillation,” Journal of the American Medical Association, vol. 292, no. 20, pp. 2471–2477, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. C. S. Ku, S. L. Lin, D. J. Wang, S. K. Chang, and W. J. Lee, “Left ventricular filling in young normotensive obese adults,” American Journal of Cardiology, vol. 73, no. 8, pp. 613–615, 1994. View at Publisher · View at Google Scholar · View at Scopus
  45. L. Frost, L. J. Hune, and P. Vestergaard, “Overweight and obesity as risk factors for atrial fibrillation or flutter: the Danish Diet, Cancer, and Health Study,” American Journal of Medicine, vol. 118, no. 5, pp. 489–495, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. S. Dublin, B. French, N. L. Glazer et al., “Risk of new-onset atrial fibrillation in relation to body mass index,” Archives of Internal Medicine, vol. 166, no. 21, pp. 2322–2328, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. A. S. Gami, D. O. Hodge, R. M. Herges et al., “Obstructive sleep apnea, obesity, and the risk of incident atrial fibrillation,” Journal of the American College of Cardiology, vol. 49, no. 5, pp. 565–571, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. L. Mont, D. Tamborero, R. Elosua, et al., “Physical activity, height, and left atrial size are independent risk factors for lone atrial fibrillation in middle-aged healthy individualsEuropace,” vol. 10, no. 1, pp. 15–20, 2008.
  49. F. Furlanello, A. Bertoldi, M. Dallago et al., “Atrial fibrillation in elite athletes,” Journal of Cardiovascular Electrophysiology, vol. 9, no. 8, supplement, pp. S63–S68, 1998. View at Scopus
  50. L. Molina, L. Mont, J. Marrugat et al., “Long-term endurance sport practice increases the incidence of lone atrial fibrillation in men: a follow-up study,” Europace, vol. 10, no. 5, pp. 618–623, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. L. Mont, A. Sambola, J. Brugada et al., “Long-lasting sport practice and lone atrial fibrillation,” European Heart Journal, vol. 23, no. 6, pp. 477–482, 2002. View at Publisher · View at Google Scholar · View at Scopus
  52. R. Elosua, A. Arquer, L. Mont et al., “Sport practice and the risk of lone atrial fibrillation: a case-control study,” International Journal of Cardiology, vol. 108, no. 3, pp. 332–337, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. J. Karjalainen, U. M. Kujala, J. Kaprio, S. Sarna, and M. Viitasalo, “Lone atrial fibrillation in vigorously exercising middle aged men: case-control study,” British Medical Journal, vol. 316, no. 7147, pp. 1784–1785, 1998. View at Scopus
  54. J. Abdulla and J. R. Nielsen, “Is the risk of atrial fibrillation higher in athletes than in the general population? A systematic review and meta-analysis,” Europace, vol. 11, no. 9, pp. 1156–1159, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. J. D. Edwards and R. G. Wilkins, “Atrial fibrillation precipitated by acute hypovolaemia,” British Medical Journal, vol. 294, no. 6567, pp. 283–284, 1987. View at Scopus
  56. I. Olivotto, F. Cecchi, S. A. Casey, A. Dolara, J. H. Traverse, and B. J. Maron, “Impact of atrial fibrillation on the clinical course of hypertrophic cardiomyopathy,” Circulation, vol. 104, no. 21, pp. 2517–2524, 2001. View at Scopus
  57. J. Bouchardy, J. Therrien, L. Pilote et al., “Atrial arrhythmias in adults with congenital heart disease,” Circulation, vol. 120, no. 17, pp. 1679–1686, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. A. V. Mattioli, S. Bonatti, M. Zennaro, and G. Mattioli, “The relationship between personality, socio-economic factors, acute life stress and the development, spontaneous conversion and recurrences of acute lone atrial fibrillation,” Europace, vol. 7, no. 3, pp. 211–220, 2005. View at Publisher · View at Google Scholar · View at Scopus
  59. E. D. Eaker, L. M. Sullivan, M. Kelly-Hayes, R. B. D'Agostino, and E. J. Benjamin, “Anger and hostility predict the development of atrial fibrillation in men in the framingham offspring study,” Circulation, vol. 109, no. 10, pp. 1267–1271, 2004. View at Publisher · View at Google Scholar · View at Scopus
  60. A. V. Mattioli, S. Bonatti, M. Zennaro, R. Melotti, and G. Mattioli, “Effect of coffee consumption, lifestyle and acute life stress in the development of acute lone atrial fibrillation,” Journal of Cardiovascular Medicine, vol. 9, no. 8, pp. 794–798, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. A. Rashid, M. Hines, B. J. Scherlag, W. S. Yamanashi, and W. Lovallo, “The effects of caffeine on the inducibility of atrial fibrillation,” Journal of Electrocardiology, vol. 39, no. 4, pp. 421–425, 2006. View at Publisher · View at Google Scholar · View at Scopus
  62. L. Frost and P. Vestergaard, “Caffeine and risk of atrial fibrillation or flutter: the Danish diet, cancer, and health study,” American Journal of Clinical Nutrition, vol. 81, no. 3, pp. 578–582, 2005. View at Scopus
  63. A. Goette, U. Lendeckel, A. Kuchenbecker et al., “Cigarette smoking induces atrial fibrosis in humans via nicotine,” Heart, vol. 93, no. 9, pp. 1056–1063, 2007. View at Publisher · View at Google Scholar · View at Scopus
  64. K. M. Ryder and E. J. Benjamin, “Epidemiology and significance of atrial fibrillation,” American Journal of Cardiology, vol. 84, no. 9, pp. R131–R138, 1999. View at Publisher · View at Google Scholar · View at Scopus
  65. R. B. Schnabel, L. M. Sullivan, D. Levy et al., “Development of a risk score for atrial fibrillation (Framingham Heart Study): a community-based cohort study,” The Lancet, vol. 373, no. 9665, pp. 739–745, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. M. A. Rosenberg, J. S. Gottdiener, S. R. Heckbert, et al., “Echocardiographic diastolic parameters and risk of atrial fibrillation: the Cardiovascular Health Study,” European Heart Journal, vol. 33, no. 7, pp. 904–912, 2012.
  67. K. K. Patton, P. T. Ellinor, S. R. Heckbert et al., “N-Terminal pro-b-type natriuretic peptide is a major predictor of the development of atrial fibrillation: the cardiovascular health study,” Circulation, vol. 120, no. 18, pp. 1768–1774, 2009. View at Publisher · View at Google Scholar · View at Scopus
  68. T. Agner, T. Almdal, B. Thorsteinsson, and E. Agner, “A reevaluation of atrial fibrillation in thyrotoxicosis,” Danish medical bulletin, vol. 31, no. 2, pp. 157–159, 1984. View at Scopus
  69. M. Haissaguerre, P. Jais, D. C. Shah, et al., “Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins1998,” The New England Journal of Medicine, vol. 339, no. 10, pp. 659–666.
  70. P. Jaïs, M. Hocini, L. Macle et al., “Distinctive electrophysiological properties of pulmonary veins in patients with atrial fibrillation,” Circulation, vol. 106, no. 19, pp. 2479–2485, 2002. View at Publisher · View at Google Scholar · View at Scopus
  71. A. Frustaci, C. Chimenti, F. Bellocci, E. Morgante, M. A. Russo, and A. Maseri, “Histological substrate of atrial biopsies in patients with lone atrial fibrillation,” Circulation, vol. 96, no. 4, pp. 1180–1184, 1997. View at Scopus
  72. A. Frustaci, M. Caldarulo, A. Buffon, F. Bellocci, R. Fenici, and D. Melina, “Cardiac biopsy in patients with 'primary' atrial fibrillation; Histologic evidence of occult myocardial diseases,” Chest, vol. 100, no. 2, pp. 303–306, 1991. View at Scopus
  73. M. K. Stiles, B. John, C. X. Wong et al., “Paroxysmal lone atrial fibrillation is associated with an abnormal atrial substrate: characterizing the 'second factor',” Journal of the American College of Cardiology, vol. 53, no. 14, pp. 1182–1191, 2009. View at Publisher · View at Google Scholar · View at Scopus
  74. F. Holmqvist, M. S. Olesen, A. Tveit et al., “Abnormal atrial activation in young patients with lone atrial fibrillation,” Europace, vol. 13, no. 2, pp. 188–192, 2011. View at Publisher · View at Google Scholar · View at Scopus
  75. P. Korantzopoulos, T. Kolettis, K. Siogas, and J. Goudevenos, “Atrial fibrillation and electrical remodeling: the potential role of inflammation and oxidative stress,” Medical Science Monitor, vol. 9, no. 9, pp. RA225–RA229, 2003. View at Scopus
  76. C. J. Garratt, M. Duytschaever, M. Killian, R. Dorland, F. Mast, and M. A. Allessie, “Repetitive electrical remodeling by paroxysms of atrial fibrillation in the goat: no cumulative effect on inducibility or stability of atrial fibrillation,” Journal of Cardiovascular Electrophysiology, vol. 10, no. 8, pp. 1101–1108, 1999. View at Scopus
  77. D. M. Todd, S. P. Fynn, A. P. Walden, W. J. Hobbs, S. Arya, and C. J. Garratt, “Repetitive 4-week periods of atrial electrical remodeling promote stability of atrial fibrillation: time course of a second factor involved in the self-perpetuation of atrial fibrillation,” Circulation, vol. 109, no. 11, pp. 1434–1439, 2004. View at Publisher · View at Google Scholar · View at Scopus
  78. T. T. Issac, H. Dokainish, and N. M. Lakkis, “Role of inflammation in initiation and perpetuation of atrial fibrillation: a systematic review of the published data,” Journal of the American College of Cardiology, vol. 50, no. 21, pp. 2021–2028, 2007. View at Publisher · View at Google Scholar · View at Scopus
  79. D. S. G. Conway, P. Buggins, E. Hughes, and G. Y. H. Lip, “Prognostic significance of raised plasma levels of interleukin-6 and C-reactive protein in atrial fibrillation,” American Heart Journal, vol. 148, no. 3, pp. 462–466, 2004. View at Publisher · View at Google Scholar · View at Scopus
  80. C. J. Boos and G. Y. H. Lip, “C-reactive protein and lone atrial fibrillation: potential confounders,” American Journal of Cardiology, vol. 98, no. 7, pp. 991–992, 2006. View at Publisher · View at Google Scholar · View at Scopus
  81. M. J. Mihm, F. Yu, C. A. Carnes et al., “Impaired myofibrillar energetics and oxidative injury during human atrial fibrillation,” Circulation, vol. 104, no. 2, pp. 174–180, 2001. View at Scopus
  82. P. T. Ellinor, A. Low, K. K. Patton, M. A. Shea, and C. A. MacRae, “C-reactive protein in lone atrial fibrillation,” American Journal of Cardiology, vol. 97, no. 9, pp. 1346–1350, 2006. View at Publisher · View at Google Scholar · View at Scopus
  83. R. J. Aviles, D. O. Martin, C. pperson-Hansen, et al., “Inflammation as a risk factor for atrial fibrillation,” Circulation, vol. 108, no. 24, pp. 3006–3010, 2003.
  84. E. Hatzinikolaou-Kotsakou, D. Tziakas, A. Hotidis et al., “Relation of C-reactive protein to the first onset and the recurrence rate in lone atrial fibrillation,” American Journal of Cardiology, vol. 97, no. 5, pp. 659–661, 2006. View at Publisher · View at Google Scholar · View at Scopus
  85. E. I. Skalidis, M. I. Hamilos, I. K. Karalis, G. Chlouverakis, G. E. Kochiadakis, and P. E. Vardas, “Isolated atrial microvascular dysfunction in patients with lone recurrent atrial fibrillation,” Journal of the American College of Cardiology, vol. 51, no. 21, pp. 2053–2057, 2008. View at Publisher · View at Google Scholar · View at Scopus
  86. P. Jais, J. T. Peng, D. C. Shah, et al., “Left ventricular diastolic dysfunction in patients with so-called lone atrial fibrillation,” Journal of Cardiovascular Electrophysiology, vol. 11, no. 6, pp. 623–625, 2000.
  87. K. C. Roberts-Thomson, P. M. Kistler, P. Sanders et al., “Fractionated atrial electrograms during sinus rhythm: relationship to age, voltage, and conduction velocity,” Heart Rhythm, vol. 6, no. 5, pp. 587–591, 2009. View at Publisher · View at Google Scholar · View at Scopus
  88. N. Ono, H. Hayashi, A. Kawase et al., “Spontaneous atrial fibrillation initiated by triggered activity near the pulmonary veins in aged rats subjected to glycolytic inhibition,” American Journal of Physiology. Heart and Circulatory Physiology, vol. 292, no. 1, pp. H639–H648, 2007. View at Publisher · View at Google Scholar · View at Scopus
  89. O. A. Centurión, S. Isomoto, A. Shimizu et al., “The effects of aging on atrial endocardial electrograms in patients with paroxysmal atrial fibrillation,” Clinical Cardiology, vol. 26, no. 9, pp. 435–438, 2003. View at Scopus
  90. W. Wongcharoen, Y. C. Chen, Y. J. Chen et al., “Aging increases pulmonary veins arrhythmogenesis and susceptibility to calcium regulation agents,” Heart Rhythm, vol. 4, no. 10, pp. 1338–1349, 2007. View at Publisher · View at Google Scholar · View at Scopus
  91. W. Wongcharoen, Y. C. Chen, Y. J. Chen, C. I. Lin, and S. A. Chen, “Effects of aging and ouabain on left atrial arrhythmogenicity,” Journal of Cardiovascular Electrophysiology, vol. 18, no. 5, pp. 526–531, 2007. View at Publisher · View at Google Scholar · View at Scopus
  92. E. P. Anyukhovsky, E. A. Sosunov, A. Plotnikov et al., “Cellular electrophysiologic properties of old canine atria provide a substrate for arrhythmogenesis,” Cardiovascular Research, vol. 54, no. 2, pp. 462–469, 2002. View at Publisher · View at Google Scholar · View at Scopus
  93. E. P. Anyukhovsky, E. A. Sosunov, P. Chandra et al., “Age-associated changes in electrophysiologic remodeling: a potential contributor to initiation of atrial fibrillation,” Cardiovascular Research, vol. 66, no. 2, pp. 353–363, 2005. View at Publisher · View at Google Scholar · View at Scopus
  94. K. Sakabe, N. Fukuda, T. Nada et al., “Age-related changes in the electrophysiologic properties of the atrium in patients with no history of atrial fibrillation,” Japanese Heart Journal, vol. 44, no. 3, pp. 385–393, 2003. View at Publisher · View at Google Scholar · View at Scopus
  95. K. Sakabe, N. Fukuda, T. Soeki et al., “Relation of age and sex to atrial electrophysiological properties in patients with no history of atrial fibrillation,” Pacing and Clinical Electrophysiology, vol. 26, no. 5, pp. 1238–1244, 2003. View at Publisher · View at Google Scholar · View at Scopus
  96. B. Brembilla-Perrot, G. Burger, D. Beurrier et al., “Influence of age on atrial fibrillation inducibility,” Pacing and Clinical Electrophysiology, vol. 27, no. 3, pp. 287–292, 2004. View at Publisher · View at Google Scholar · View at Scopus
  97. L. Hove-Madsen, A. Llach, A. Bayes-Genís et al., “Atrial fibrillation is associated with increased spontaneous calcium release from the sarcoplasmic reticulum in human atrial myocytes,” Circulation, vol. 110, no. 11, pp. 1358–1363, 2004. View at Publisher · View at Google Scholar · View at Scopus
  98. J. A. Vest, X. H. T. Wehrens, S. R. Reiken et al., “Defective cardiac ryanodine receptor regulation during atrial fibrillation,” Circulation, vol. 111, no. 16, pp. 2025–2032, 2005. View at Publisher · View at Google Scholar · View at Scopus
  99. A. El-Armouche, P. Boknik, T. Eschenhagen et al., “Molecular determinants of altered Ca2+ handling in human chronic atrial fibrillation,” Circulation, vol. 114, no. 7, pp. 670–680, 2006. View at Publisher · View at Google Scholar · View at Scopus
  100. P. M. Kistler, P. Sanders, S. P. Fynn et al., “Electrophysiologic and electroanatomic changes in the human atrium associated with age,” Journal of the American College of Cardiology, vol. 44, no. 1, pp. 109–116, 2004. View at Publisher · View at Google Scholar · View at Scopus
  101. L. Brorson and S. B. Olsson, “Right atrial monophasic action potential in healthy males. Studies during spontaneous sinus rhythm and atrial pacing,” Acta Medica Scandinavica, vol. 199, no. 6, pp. 433–446, 1976. View at Scopus
  102. N. Toda, “Age-related changes in the transmembrane potential of isolated rabbit sino-atrial nodes and atria,” Cardiovascular Research, vol. 14, no. 1, pp. 58–63, 1980. View at Scopus
  103. N. Su, J. Duan, M. P. Moffat, and N. Narayanan, “Age related changes in electrophysiological responses to muscarinic receptor stimulation in rat myocardium,” Canadian Journal of Physiology and Pharmacology, vol. 73, no. 10, pp. 1430–1436, 1995. View at Scopus
  104. W. Dun and P. A. Boyden, “Aged atria: electrical remodeling conducive to atrial fibrillation,” Journal of Interventional Cardiac Electrophysiology, vol. 25, no. 1, pp. 9–18, 2009. View at Publisher · View at Google Scholar · View at Scopus
  105. A. Michelucci, L. Padeletti, and G. A. Fradella, “Ageing and atrial electrophysiologic properties in man,” International Journal of Cardiology, vol. 5, no. 1, pp. 75–81, 1984. View at Scopus
  106. C. Huang, W. Ding, L. Li, and D. Zhao, “Differences in the aging-associated trends of the monophasic action potential duration and effective refractory period of the right and left atria of the rat,” Circulation Journal, vol. 70, no. 3, pp. 352–357, 2006. View at Publisher · View at Google Scholar · View at Scopus
  107. P. Kojodjojo, P. Kanagaratnam, V. Markides, D. W. Davies, and N. Peters, “Age-related changes in human left and right atrial conduction,” Journal of Cardiovascular Electrophysiology, vol. 17, no. 2, pp. 120–127, 2006. View at Publisher · View at Google Scholar · View at Scopus
  108. S. Baba, W. Dun, M. Hirose, and P. A. Boyden, “Sodium current function in adult and aged canine atrial cells,” American Journal of Physiology. Heart and Circulatory Physiology, vol. 291, no. 2, pp. H756–H761, 2006. View at Publisher · View at Google Scholar · View at Scopus
  109. W. Dun, T. Yagi, M. R. Rosen, and P. A. Boyden, “Calcium and potassium currents in cells from adult and aged canine right atria,” Cardiovascular Research, vol. 58, no. 3, pp. 526–534, 2003. View at Publisher · View at Google Scholar · View at Scopus
  110. C. C. Wu, M. J. Su, J. F. Chi, M. H. Wu, and Y. T. Lee, “Comparison of aging and hypercholesterolemic effects on the sodium inward currents in cardiac myocytes,” Life Sciences, vol. 61, no. 16, pp. 1539–1551, 1997. View at Publisher · View at Google Scholar · View at Scopus
  111. H. Hayashi, C. Wang, Y. Miyauchi, et al., “Aging-related increase to inducible atrial fibrillation in the rat model,” Journal of Cardiovascular Electrophysiology, vol. 13, no. 8, pp. 801–808, 2002.
  112. S. Sossalla, B. Kallmeyer, S. Wagner et al., “Altered Na+ currents in atrial fibrillation. effects of ranolazine on arrhythmias and contractility in human atrial myocardium,” Journal of the American College of Cardiology, vol. 55, no. 21, pp. 2330–2342, 2010. View at Publisher · View at Google Scholar · View at Scopus
  113. R. Gaspo, R. F. Bosch, E. Bou-Abboud, and S. Nattel, “Tachycardia-induced changes in Na+ current in a chronic dog model of atrial fibrillation,” Circulation Research, vol. 81, no. 6, pp. 1045–1052, 1997. View at Scopus
  114. P. Kanagaratnam, A. Cherian, R. D. L. Stanbridge, B. Glenville, N. J. Severs, and N. S. Peters, “Relationship between connexins and atrial activation during human atrial fibrillation,” Journal of Cardiovascular Electrophysiology, vol. 15, no. 2, pp. 206–213, 2004. View at Publisher · View at Google Scholar · View at Scopus
  115. S. A. Jones, M. K. Lancaster, and M. R. Boyett, “Ageing-related changes of connexins and conduction within the sinoatrial node,” Journal of Physiology, vol. 560, no. 2, pp. 429–437, 2004. View at Publisher · View at Google Scholar · View at Scopus
  116. T. Koura, M. Hara, S. Takeuchi et al., “Anisotropic conduction properties in canine atria analyzed by high-resolution optical mapping: preferential direction of conduction block changes from longitudinal to transverse with increasing age,” Circulation, vol. 105, no. 17, pp. 2092–2098, 2002. View at Publisher · View at Google Scholar · View at Scopus
  117. M. S. Spach, J. F. Heidlage, P. C. Dolber, and R. C. Barr, “Mechanism of origin of conduction disturbances in aging human atrial bundles: experimental and model study,” Heart Rhythm, vol. 4, no. 2, pp. 175–185, 2007. View at Publisher · View at Google Scholar · View at Scopus
  118. C. Chimenti, M. A. Russo, A. Carpi, and A. Frustaci, “Histological substrate of human atrial fibrillation,” Biomedicine and Pharmacotherapy, vol. 64, no. 3, pp. 177–183, 2010. View at Publisher · View at Google Scholar · View at Scopus
  119. S. Verheule, E. Tuyls, A. Van Hunnik, M. Kuiper, U. Schotten, and M. Allessie, “Fibrillatory conduction in the atrial free walls of goats in persistent and permanent atrial fibrillation,” Circulation: Arrhythmia and Electrophysiology, vol. 3, no. 6, pp. 590–599, 2010. View at Publisher · View at Google Scholar · View at Scopus
  120. M. S. Spach and P. C. Dolber, “Relating extracellular potentials and their derivatives to anisotropic propagation at a microscopic level in human cardiac muscle: evidence for electrical uncoupling of side-to-side fiber connections with increasing age,” Circulation Research, vol. 58, no. 3, pp. 356–371, 1986. View at Scopus
  121. P. H. Lin, S. H. Lee, C. P. Su, and Y. H. Wei, “Oxidative damage to mitochondrial DNA in atrial muscle of patients with atrial fibrillation,” Free Radical Biology and Medicine, vol. 35, no. 10, pp. 1310–1318, 2003. View at Publisher · View at Google Scholar · View at Scopus
  122. N. H. Pan, H. M. Tsao, N. Chang, Y. J. Chen, and S. A. Chen, “Aging dilates atrium and pulmonary veins: implications for the genesis of atrial fibrillation,” Chest, vol. 133, no. 1, pp. 190–196, 2008. View at Publisher · View at Google Scholar · View at Scopus
  123. S. A. Nazir and M. J. Lab, “Mechanoelectric feedback and atrial arrhythmias,” Cardiovascular Research, vol. 32, no. 1, pp. 52–61, 1996. View at Publisher · View at Google Scholar · View at Scopus
  124. A. Ruigómez, S. Johansson, M. A. Wallander, and L. A. García Rodríguez, “Predictors and prognosis of paroxysmal atrial fibrillation in general practice in the UK,” BMC Cardiovascular Disorders, vol. 5, article no. 20, 2005. View at Publisher · View at Google Scholar · View at Scopus
  125. C. R. Kerr, K. H. Humphries, M. Talajic et al., “Progression to chronic atrial fibrillation after the initial diagnosis of paroxysmal atrial fibrillation: results from the Canadian Registry of Atrial Fibrillation,” American Heart Journal, vol. 149, no. 3, pp. 489–496, 2005. View at Publisher · View at Google Scholar · View at Scopus
  126. S. A. Lopez, F. Formiga, X. Bosch, et al., “Prevalence of atrial fibrillation and related factors in hospitalized old patients: ESFINGE study,” Medicina Clínica, vol. 138, no. 6, pp. 231–237, 2012.
  127. C. B. de Vos, R. Pisters, R. Nieuwlaat et al., “Progression from paroxysmal to persistent atrial fibrillation. clinical correlates and prognosis,” Journal of the American College of Cardiology, vol. 55, no. 8, pp. 725–731, 2010. View at Publisher · View at Google Scholar · View at Scopus
  128. C. Kerr, J. Boone, S. Connolly et al., “Follow-up of atrial fibrillation: the initial experience of the Canadian Registry of Atrial Fibrillation,” European Heart Journal, vol. 17, no. 7, supplement, pp. 48–51, 1996. View at Scopus
  129. N. D. Brunetti, L. De Gennaro, P. L. Pellegrino, G. Dellegrottaglie, G. Antonelli, and M. Di Biase, “Atrial fibrillation with symptoms other than palpitations: incremental diagnostic sensitivity with at-home tele-cardiology assessment for emergency medical service,” European Journal of Preventive Cardiology, vol. 19, no. 3, pp. 306–313, 2011.
  130. U. Lotze, J. Liebetrau, I. Malsch et al., “Medical treatment of patients with atrial fibrillation aged over 80 years in daily clinical practice: influence of age and CHADS2 score,” Archives of Gerontology and Geriatrics, vol. 50, no. 1, pp. 36–41, 2010. View at Publisher · View at Google Scholar · View at Scopus
  131. S. Kralev, K. Schneider, S. Lang, et al., “Incidence and severity of coronary artery disease in patients with atrial fibrillation undergoing first-time coronary angiography,” PLoS One, vol. 6, no. 9, Article ID e24964, 2011.
  132. J. Liao, Z. Khalid, C. Scallan, C. Morillo, and M. O'Donnell, “Noninvasive cardiac monitoring for detecting paroxysmal atrial fibrillation or flutter after acute ischemic stroke: a systematic review,” Stroke, vol. 38, no. 11, pp. 2935–2940, 2007. View at Publisher · View at Google Scholar · View at Scopus
  133. K. Lakshminarayan, C. A. Solid, A. J. Collins, D. C. Anderson, and C. A. Herzog, “Atrial fibrillation and stroke in the general medicare population: a 10-year perspective (1992 to 2002),” Stroke, vol. 37, no. 8, pp. 1969–1974, 2006. View at Publisher · View at Google Scholar · View at Scopus
  134. P. A. Wolf, R. D. Abbott, and W. B. Kannel, “Atrial fibrillation as an independent risk factor for stroke: the Framingham Study,” Stroke, vol. 22, no. 8, pp. 983–988, 1991. View at Scopus
  135. R. G. Hart, O. Benavente, R. McBride, and L. A. Pearce, “Antithrombotic therapy to prevent stroke in patients with atrial fibrillation: a meta-analysis,” Annals of Internal Medicine, vol. 131, no. 7, pp. 492–501, 1999. View at Scopus
  136. D. N. Salem, P. D. Stein, A. Al-Ahmad et al., “Antithrombotic therapy in valvular heart disease—native and prosthetic: the 7th ACCP Conference on Antithrombotic and Thrombolytic Therapy,” Chest, vol. 126, no. 3, supplement, pp. 457S–482S, 2004. View at Publisher · View at Google Scholar · View at Scopus
  137. B. F. Gage, A. D. Waterman, W. Shannon, M. Boechler, M. W. Rich, and M. J. Radford, “Validation of clinical classification schemes for predicting stroke: results from the National Registry of Atrial Fibrillation,” Journal of the American Medical Association, vol. 285, no. 22, pp. 2864–2870, 2001. View at Scopus
  138. M. Hughes and G. Y. H. Lip, “Stroke and thromboembolism in atrial fibrillation: a systematic review of stroke risk factors, risk stratification schema and cost effectiveness data,” Thrombosis and Haemostasis, vol. 99, no. 2, pp. 295–304, 2008. View at Publisher · View at Google Scholar · View at Scopus
  139. Stroke in AF Working Group, “Independent predictors of stroke in patients with atrial fibrillation: a systematic review,” Neurology, vol. 69, no. 6, pp. 546–554, 2007.
  140. G. Y. H. Lip, R. Nieuwlaat, R. Pisters, D. A. Lane, and H. J. G. M. Crijns, “Refining clinical risk stratification for predicting stroke and thromboembolism in atrial fibrillation using a novel risk factor-based approach: the Euro Heart Survey on atrial fibrillation,” Chest, vol. 137, no. 2, pp. 263–272, 2010. View at Publisher · View at Google Scholar · View at Scopus
  141. D. E. Singer, Y. Chang, M. C. Fang et al., “The net clinical benefit of warfarin anticoagulation in atrial fibrillation,” Annals of Internal Medicine, vol. 151, no. 5, pp. 297–305, 2009. View at Scopus
  142. A. S. Go, E. M. Hylek, L. H. Borowsky, K. A. Phillips, J. V. Selby, and D. E. Singer, “Warfarin use among ambulatory patients with nonvalvular atrial fibrillation: the anticoagulation and risk factors in atrial fibrillation (ATRIA) study,” Annals of Internal Medicine, vol. 131, no. 12, pp. 927–934, 1999. View at Scopus
  143. D. Pugh, J. Pugh, and G. E. Mead, “Attitudes of physicians regarding anticoagulation for atrial fibrillation: a systematic review,” Age Ageing, vol. 40, no. 6, pp. 675–683, 2011.
  144. R. Marinigh, G. Y. H. Lip, N. Fiotti, C. Giansante, and D. A. Lane, “Age as a risk factor for stroke in atrial fibrillation patients: implications for thromboprophylaxis,” Journal of the American College of Cardiology, vol. 56, no. 11, pp. 827–837, 2010. View at Publisher · View at Google Scholar · View at Scopus
  145. M. C. Fang, A. S. Go, Y. Chang et al., “Death and disability from warfarin-associated intracranial and extracranial hemorrhages,” American Journal of Medicine, vol. 120, no. 8, pp. 700–705, 2007. View at Publisher · View at Google Scholar · View at Scopus
  146. E. M. Hylek, C. Evans-Molina, C. Shea, L. E. Henault, and S. Regan, “Major hemorrhage and tolerability of warfarin in the first year of therapy among elderly patients with atrial fibrillation,” Circulation, vol. 115, no. 21, pp. 2689–2696, 2007. View at Publisher · View at Google Scholar · View at Scopus
  147. M. Man-Son-Hing, G. Nichol, A. Lau, and A. Laupacis, “Choosing antithrombotic therapy for elderly patients with atrial fibrillation who are at risk for falls,” Archives of Internal Medicine, vol. 159, no. 7, pp. 677–685, 1999. View at Publisher · View at Google Scholar · View at Scopus
  148. R. Pisters, D. A. Lane, R. Nieuwlaat, C. B. De Vos, H. J. G. M. Crijns, and G. Y. H. Lip, “A novel user-friendly score (HAS-BLED) to assess 1-year risk of major bleeding in patients with atrial fibrillation: the Euro heart survey,” Chest, vol. 138, no. 5, pp. 1093–1100, 2010. View at Publisher · View at Google Scholar · View at Scopus
  149. D. J. Stott, R. I. Dewar, C. J. Garratt, et al., “RCPE UK consensus conference on 'Approaching the comprehensive management of atrial fibrillation: evolution or revolution?',” The Journal of the Royal College of Physicians of Edinburgh, vol. 42, supplement 18, pp. 3–4. View at Publisher · View at Google Scholar
  150. S. J. Connolly, M. D. Ezekowitz, S. Yusuf, et al., “Dabigatran versus warfarin in patients with atrial fibrillation,” The New England Journal of Medicine, vol. 361, no. 12, pp. 1139–1151, 2009.
  151. J. W. Eikelboom, L. Wallentin, S. J. Connolly et al., “Risk of bleeding with 2 doses of dabigatran compared with warfarin in older and younger patients with atrial fibrillation: an analysis of the randomized evaluation of long-term anticoagulant therapy (RE-LY) Trial,” Circulation, vol. 123, no. 21, pp. 2363–2372, 2011. View at Publisher · View at Google Scholar · View at Scopus
  152. M. R. Patel, K. W. Mahaffey, J. Garg, et al., “Rivaroxaban versus warfarin in nonvalvular atrial fibrillation,” The New England Journal of Medicine, vol. 365, no. 10, pp. 883–891, 2011.
  153. C. B. Granger, J. H. Alexander, J. J. McMurray, et al., “Apixaban versus warfarin in patients with atrial fibrillation,” The New England Journal of Medicine, vol. 365, no. 11, pp. 981–992, 2011.
  154. D. G. Wyse, “Rate control vs rhythm control strategies in atrial fibrillation,” Progress in Cardiovascular Diseases, vol. 48, no. 2, pp. 125–138, 2005. View at Publisher · View at Google Scholar · View at Scopus
  155. I. C. Van Gelder, H. F. Groenveld, H. J. G. M. Crijns et al., “Lenient versus strict rate control in patients with atrial fibrillation,” New England Journal of Medicine, vol. 362, no. 15, pp. 1363–1373, 2010. View at Publisher · View at Google Scholar · View at Scopus
  156. I. C. Van Gelder, D. G. Wyse, M. L. Chandler et al., “Does intensity of rate-control influence outcome in atrial fibrillation? An analysis of pooled data from the RACE and AFFIRM studies,” Europace, vol. 8, no. 11, pp. 935–942, 2006. View at Publisher · View at Google Scholar · View at Scopus
  157. M. Brignole, G. L. Botto, L. Mont, et al., “Predictors of clinical efficacy of 'Ablate and Pace' therapy in patients with permanent atrial fibrillation,” Heart, vol. 98, no. 4, pp. 297–302, 2012.
  158. A. N. Ganesan, A. G. Brooks, K. C. Roberts-Thomson, et al., “Role of AV nodal ablation in cardiac resynchronization in patients with coexistent atrial fibrillation and heart failure a systematic review,” Journal of the American College of Cardiology, vol. 59, no. 8, pp. 719–726, 2012.
  159. A. E. Epstein, “Relationships between snus rhythm, treatment, and survival in the Atrial Fibrillation Follow-Up Investigation of Rhythm Management (AFFIRM) study,” Circulation, vol. 109, no. 12, pp. 1509–1513, 2004. View at Publisher · View at Google Scholar · View at Scopus
  160. A. J. Camm, P. Kirchhof, G. Y. Lip, et al., “Guidelines for the management of atrial fibrillation: the Task Force for the Management of Atrial Fibrillation of the European Society of Cardiology (ESC),” European Heart Journal, vol. 31, no. 19, pp. 2369–2429, 2010.
  161. C. Lafuente-Lafuente, S. Mouly, M. A. Longas-Tejero, and J. F. Bergmann, “Antiarrhythmics for maintaining sinus rhythm after cardioversion of atrial fibrillation,” Cochrane Database of Systematic Reviews, no. 4, Article ID CD005049, 2007. View at Scopus
  162. J. Y. Le Heuzey, G. M. De Ferrari, D. Radzik, M. Santini, J. Zhu, and J. M. Davy, “A short-term, randomized, double-blind, parallel-group study to evaluate the efficacy and safety of dronedarone versus amiodarone in patients with persistent atrial fibrillation: the dionysos study,” Journal of Cardiovascular Electrophysiology, vol. 21, no. 6, pp. 597–605, 2010. View at Publisher · View at Google Scholar · View at Scopus
  163. S. J. Connolly, H. J. G. M. Crijns, C. Torp-Pedersen et al., “Analysis of stroke in ATHENA: a placebo-controlled, double-blind, parallel-arm trial to assess the efficacy of dronedarone 400 mg bid for the prevention of cardiovascular hospitalization or death from any cause in patients with atrial fibrillation/atrial flutter,” Circulation, vol. 120, no. 13, pp. 1174–1180, 2009. View at Publisher · View at Google Scholar · View at Scopus
  164. M. R. Reynolds, J. Walczak, S. A. White, D. J. Cohen, and D. J. Wilber, “Improvements in symptoms and quality of life in patients with paroxysmal atrial fibrillation treated with radiofrequency catheter ablation versus antiarrhythmic drugs,” Circulation: Cardiovascular Quality and Outcomes, vol. 3, no. 6, pp. 615–623, 2010. View at Publisher · View at Google Scholar · View at Scopus
  165. J. P. Piccini, R. D. Lopes, M. H. Kong, V. Hasselblad, K. Jackson, and S. M. Al-Khatib, “Pulmonary vein isolation for the maintenance of sinus rhythm in patients with atrial fibrillation a meta-analysis of randomized, controlled trials,” Circulation: Arrhythmia and Electrophysiology, vol. 2, no. 6, pp. 626–633, 2009. View at Publisher · View at Google Scholar · View at Scopus
  166. R. Cappato, H. Calkins, S. A. Chen et al., “Updated worldwide survey on the methods, efficacy, and safety of catheter ablation for human atrial fibrillation,” Circulation: Arrhythmia and Electrophysiology, vol. 3, no. 1, pp. 32–38, 2010. View at Publisher · View at Google Scholar · View at Scopus
  167. A. Noheria, A. Kumar, J. V. Wylie, and M. E. Josephson, “Catheter ablation vs antiarrhythmic drug therapy for atrial fibrillation: a systematic review,” Archives of Internal Medicine, vol. 168, no. 6, pp. 581–586, 2008. View at Publisher · View at Google Scholar · View at Scopus
  168. P. Jaïs, B. Cauchemez, L. Macle et al., “Catheter ablation versus antiarrhythmic drugs for atrial fibrillation: the A4 study,” Circulation, vol. 118, no. 24, pp. 2498–2505, 2008. View at Publisher · View at Google Scholar · View at Scopus
  169. H. Calkins, M. R. Reynolds, P. Spector et al., “Treatment of atrial fibrillation with antiarrhythmic drugs or radiofrequency ablation: two systematic literature reviews and meta-analyses,” Circulation: Arrhythmia and Electrophysiology, vol. 2, no. 4, pp. 349–361, 2009. View at Publisher · View at Google Scholar · View at Scopus
  170. L. M. Haegeli, F. Duru, E. E. Lockwood et al., “Ablation of atrial fibrillation after the retirement age: considerations on safety and outcome,” Journal of Interventional Cardiac Electrophysiology, vol. 28, no. 3, pp. 193–197, 2010. View at Publisher · View at Google Scholar · View at Scopus