About this Journal Submit a Manuscript Table of Contents
Discrete Dynamics in Nature and Society
Volume 2012 (2012), Article ID 162527, 13 pages
http://dx.doi.org/10.1155/2012/162527
Research Article

Stability Analysis of an HIV/AIDS Dynamics Model with Drug Resistance

1School of Mathematical Sciences, Ocean University of China, Qingdao 266100, China
2Department of Mathematics, North University of China, Taiyuan 030051, China
3Department of Nosocomial Infection Management and Disease Control, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing 100853, China
4National Institute of Drug Dependence, Peking University, Beijing 100191, China
5Takemi Program in International Health, Department of Global Health and Population, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA

Received 11 August 2012; Accepted 22 October 2012

Academic Editor: Youssef Raffoul

Copyright © 2012 Qianqian Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. WHO, “UNAIDS World AIDS Day Report,” 2011.
  2. Ministry of Health, “2011 Estimates for the HIV/AIDS Epidemic in China,” 2011.
  3. R. M. Anderson, “The role of mathematical models in the study of HIV transmission and the epidemiology of AIDS,” Journal of Acquired Immune Deficiency Syndromes, vol. 1, no. 3, pp. 241–256, 1988. View at Scopus
  4. R. M. Anderson, G. F. Medley, R. M. May, and A. M. Johnson, “A preliminary study of the transmission dynamics of the human immunodeficiency virus (HIV), the causative agent of AIDS,” IMA Journal of Mathematics Applied in Medicine and Biology, vol. 3, no. 4, pp. 229–263, 1986. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  5. R. M. May and R. M. Anderson, “Transmission dynamics of HIV infection,” Nature, vol. 326, no. 6109, pp. 137–142, 1987. View at Scopus
  6. C. C. McCluskey, “A model of HIV/AIDS with staged progression and amelioration,” Mathematical Biosciences, vol. 181, no. 1, pp. 1–16, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  7. H. Guo and M. Y. Li, “Global dynamics of a staged-progression model for HIV/AIDS with amelioration,” Nonlinear Analysis: Real World Applications, vol. 12, no. 5, pp. 2529–2540, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  8. Y. Wang and Y.-c. Zhou, “Mathematical modeling and dynamics of HIV progression and treatment,” Chinese Journal of Engineering Mathematics, vol. 27, no. 3, pp. 534–548, 2010. View at Zentralblatt MATH
  9. S. Blower, “Calculating the consequences: HAART and risky sex,” AIDS, vol. 15, no. 10, pp. 1309–1310, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. M. C. Boily, F. I. Bastos, K. Desai, and B. Mâsse, “Changes in the transmission dynamics of the HIV epidemic after the wide-scale use of antiretroviral therapy could explain increases in sexually transmitted infections—results from mathematical models,” Sexually Transmitted Diseases, vol. 31, no. 2, pp. 100–112, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Bachar and A. Dorfmayr, “HIV treatment models with time delay,” Comptes Rendus—Biologies, vol. 327, no. 11, pp. 983–994, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. S. M. Blower, H. B. Gershengorn, and R. M. Grant, “A tale of two futures: HIV and antiretroviral therapy in San Francisco,” Science, vol. 287, no. 5453, pp. 650–654, 2000. View at Publisher · View at Google Scholar · View at Scopus
  13. O. Sharomi and A. B. Gumel, “Dynamical analysis of a multi-strain model of HIV in the presence of anti-retroviral drugs,” Journal of Biological Dynamics, vol. 2, no. 3, pp. 323–345, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  14. N. J. D. Nagelkerke, P. Jha, S. J. De Vlas et al., “Modelling HIV/AIDS epidemics in Botswana and India: impact of interventions to prevent transmission,” Bulletin of the World Health Organization, vol. 80, no. 2, pp. 89–96, 2002. View at Scopus
  15. L. Cai, X. Li, M. Ghosh, and B. Guo, “Stability analysis of an HIV/AIDS epidemic model with treatment,” Journal of Computational and Applied Mathematics, vol. 229, no. 1, pp. 313–323, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  16. J. Q. Li, Y. L. Yang, and W. Wang, “Qualitative analysis of an HIV transmission model with therapy,” Chinese Journal of Engineering Mathematics, vol. 26, no. 2, pp. 226–232, 2009.
  17. P. van den Driessche and J. Watmough, “Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,” Mathematical Biosciences, vol. 180, pp. 29–48, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  18. M. S. Cohen, Y. Q. Chen, M. McCauley, et al., “Prevention of HIV-1 infection with early antiretroviral therapy,” The New England Journal of Medicine, vol. 365, no. 6, pp. 493–405, 2011.