Abstract

We study the life behavior of a system which is subjected to shocks of random magnitudes over discrete time periods. We obtain the survival function and mean time to failure of the system assuming that the sizes of the shocks follow a discrete probability distribution under cumulative and mixed shock models.

1. Introduction

There are various engineering systems which are subjected to shocks of random magnitudes at random times. The shock models can be classified in different ways. According to the cumulative shock model, the system breaks down because of a cumulative effect of shocks, while in an extreme shock model the system fails because of one single shock with large magnitude. See, for example, [1–9] for various problems on shock models.

Most of the studies on shock models focus on the evaluation of system failure time in a continuous setup, that is, the shocks arrive according to a renewal process, and the times between successive shocks have a continuous probability distribution. Some results on discrete case are in [3, 7, 10].

Consider a system which is subjected to periodic random shocks. A shock occurs with probability 𝑝 in each period 𝑛=1,2,…. The period should be understood as hour, day, and so forth. The magnitude of the shock which occurs in period 𝑗 is a random variable denoted by 𝐡𝑗. Assume that such a system fails if and only if the sum of the magnitudes of cumulative shocks exceed, the level π‘˜ for π‘˜>0. Let 𝐼𝑗 be a binary random variable representing the shock occurrences that is, 𝐼𝑗=1 if a shock occurs in period 𝑗 and 𝐼𝑗=0, otherwise. For 𝑗β‰₯1, define π‘Œπ‘—=𝐡𝑗,𝐼𝑗=10,𝐼𝑗=0,(1.1) where the random variables 𝐼𝑗 and 𝐡𝑗 are independent in each time period. The random variable 𝐡𝑗 is strictly positive, and {𝐡𝑗,𝑗β‰₯1} is a sequence of independent identically distributed (i.i.d.) random variables with cumulative distribution function (c.d.f.) and probability mass function (p.m.f.) 𝑓𝐡.

Thus, under the cumulative shock model, the failure time of the system can be defined by the following waiting time random variable: π‘Šπ‘˜ξƒ―=minπ‘›βˆΆπ‘›ξ“π‘—=1π‘Œπ‘—ξƒ°,>π‘˜(1.2) for π‘˜>0.

In the case of a mixed shock model, a system fails if either a single shock with a large magnitude occurs or the sum of cumulative shocks exceeds the critical level. Thus, in this case the time to failure of the system is defined by the following compound waiting time random variable. π‘π‘˜,π‘šξ€·π‘Š=minπ‘˜,π‘‡π‘šξ€Έ,(1.3) where π‘‡π‘šξ€½=minπ‘›βˆΆπ‘€π‘›ξ€Ύ>π‘š,(1.4) where 𝑀𝑛=max(π‘Œ1,…,π‘Œπ‘›) for π‘˜,π‘š>0.

Such models can also be applied to insurance, replacing shock with claim and magnitude of the shock with claim amount. In this case, a period can be seen as a week, month, and so forth, and the random variable π‘Šπ‘˜ represents the waiting time until the cumulative sum of claim amounts exceeds the level π‘˜. Similarly, the random variable π‘‡π‘š is the waiting time until the first extreme claim size falls above the level π‘š.

The present paper is organized as follows. In Section 2, we derive recurrence formulae for the survival function and the mean time to failure (MTTF) of the system under the cumulative shock model. We also study two related characteristics 𝑁(π‘Šπ‘˜) and 𝑆(π‘Šπ‘˜) which represent, respectively, the number of shocks and the total shock that the system is subjected up to time when the system fails. Section 3 includes the results for mixed shock model.

2. Cumulative Shock Model

In the following, we derive two popular reliability characteristics: survival function and mean time to failure of the system under the cumulative shock model.

It is clear that π‘ƒξ€½π‘Šπ‘˜ξ€Ύ>𝑛=𝑃{𝑆(𝑛)β‰€π‘˜}=πΉπ‘Œβˆ—π‘›(π‘˜),(2.1) where 𝑆(𝑛)=π‘Œ1+β‹―+π‘Œπ‘›, and πΉπ‘Œβˆ—π‘› denotes the 𝑛-fold convolution of πΉπ‘Œ with itself, πΉπ‘Œ(π‘₯)=𝑃{π‘Œβ‰€π‘₯}. By conditioning on the claim occurrence, one obtains πΉπ‘Œ(π‘₯)=1βˆ’π‘+𝑝𝐹𝐡(π‘₯),(2.2) where 𝐹𝐡(π‘₯)=𝑃{𝐡≀π‘₯}.

Theorem 2.1. For 𝑛β‰₯1, π‘ƒξ€½π‘Šπ‘˜ξ€Ύ>𝑛=𝑝min(π‘˜,𝑏𝑒)𝑏=1π‘ƒξ€½π‘Šπ‘˜βˆ’π‘ξ€Ύπ‘“>π‘›βˆ’1π΅ξ€½π‘Š(𝑏)+(1βˆ’π‘)π‘ƒπ‘˜ξ€Ύ,>π‘›βˆ’1(2.3) and 𝑃{π‘Šπ‘˜>0}=1, where 𝑏𝑒 is the endpoint of the support of 𝑓𝐡.

Proof. From (2.1), it follows that π‘ƒξ€½π‘Šπ‘˜ξ€Ύ>𝑛=πΉπ‘Œβˆ—πΉπ‘Œβˆ—π‘›βˆ’1(π‘˜).(2.4)
Thus, the proof is immediate from (2.2).

Proposition 2.2. For π‘˜>0, the MTTF of the system can be computed from πΈξ€·π‘Šπ‘˜ξ€Έ=1𝑝+min(π‘˜,𝑏𝑒)𝑏=1πΈξ€·π‘Šπ‘˜βˆ’π‘ξ€Έπ‘“π΅(𝑏),(2.5) with 𝐸(π‘Š0)=1/𝑝.

Proof. Using (2.1), πΈξ€·π‘Šπ‘˜ξ€Έ=βˆžξ“π‘›=0π‘ƒξ€½π‘Šπ‘˜ξ€Ύ=>π‘›βˆžξ“π‘›=0𝑃{𝑆(𝑛)β‰€π‘˜}=βˆžξ“π‘›=0πΉπ‘Œβˆ—π‘›(π‘˜)=1+πΉπ‘Œξ€·π‘Šβˆ—πΈπ‘˜ξ€Έ.(2.6)
Thus, the proof follows from (2.2) since πΈξ€·π‘Šπ‘˜ξ€Έξ€·π‘Š=1+(1βˆ’π‘)πΈπ‘˜ξ€Έ+π‘πΉπ΅ξ€·π‘Šβˆ—πΈπ‘˜ξ€Έ.(2.7)

Example 2.3. Let 𝐡 have a geometric distribution with pmf 𝑓𝐡(𝑏)=(1βˆ’π›Ό)π›Όπ‘βˆ’1,𝑏=1,2,…. Then under the conditions of Proposition 2.2, πΈξ€·π‘Šπ‘˜ξ€Έ=1𝑝+(1βˆ’π›Ό)π‘˜ξ“π‘=1π›Όπ‘βˆ’1πΈξ€·π‘Šπ‘˜βˆ’π‘ξ€Έ,(2.8) with 𝐸(π‘Š0)=1/𝑝.

2.1. Related Characteristics

For π‘˜>0, we define new random variables as follows: π‘ξ€·π‘Šπ‘˜ξ€Έ=π‘Šπ‘˜ξ“π‘—=1𝐼𝑗,π‘†ξ€·π‘Šπ‘˜ξ€Έ=π‘Šπ‘˜ξ“π‘—=1π‘Œπ‘—=𝑁(π‘Šπ‘˜)𝑗=1𝐡𝑗.(2.9)

It is clear that the random variables 𝑁(π‘Šπ‘˜) and 𝑆(π‘Šπ‘˜) represent, respectively, the number of shocks and the total shock that the system is subjected up to time when the system fails. These two characteristics might be useful for improvement purposes and can be effectively used in optimal system design.

Theorem 2.4. For π‘šβ‰₯1, π‘ƒξ€½π‘ξ€·π‘Šπ‘˜ξ€Έξ€Ύ==π‘šβˆžξ“π‘›=π‘šπ‘„(𝑛,π‘š,π‘˜),(2.10) where 𝑄(𝑛,π‘š,π‘˜)=𝑃(𝑛,π‘š,π‘˜)βˆ’π‘…(𝑛,π‘š,π‘˜), and 𝑃(𝑛,π‘š,π‘˜) and 𝑅(𝑛,π‘š,π‘˜) can be computed recursively from 𝑃(𝑛,π‘š,π‘˜)=𝑝𝑃(π‘›βˆ’1,π‘šβˆ’1,π‘˜)+(1βˆ’π‘)𝑃(π‘›βˆ’1,π‘š,π‘˜),(2.11) for 𝑛β‰₯π‘š and 𝑃(𝑛,π‘š,π‘˜)=0 for 𝑛<π‘š, and 𝑅(𝑛,π‘š,π‘˜)=𝑝min(π‘˜,𝑏𝑒)𝑏=1𝑅(π‘›βˆ’1,π‘šβˆ’1,π‘˜βˆ’π‘)𝑓𝐡(𝑏)+(1βˆ’π‘)𝑅(π‘›βˆ’1,π‘š,π‘˜),(2.12) for 𝑛β‰₯π‘š and 𝑅(𝑛,π‘š,π‘˜)=0 for 𝑛<π‘š.

Proof. By conditioning on π‘Šπ‘˜, π‘ƒξ€½π‘ξ€·π‘Šπ‘˜ξ€Έξ€Ύ==π‘šβˆžξ“π‘›=π‘šπ‘ƒξ€½π‘(𝑛)=π‘š,π‘Šπ‘˜ξ€Ύ.=𝑛(2.13)
The probability 𝑄(𝑛,π‘š,π‘˜)=𝑃{𝑁(𝑛)=π‘š,π‘Šπ‘˜=𝑛} can be written as follows: 𝑄𝑁(𝑛,π‘š,π‘˜)=𝑃(𝑛)=π‘š,π‘Šπ‘˜ξ€Ύξ€½π‘>π‘›βˆ’1βˆ’π‘ƒ(𝑛)=π‘š,π‘Šπ‘˜ξ€Ύ>𝑛.(2.14) Thus, we need to get recurrences for 𝑃(𝑛,π‘š,π‘˜)=𝑃{𝑁(𝑛)=π‘š,π‘Šπ‘˜>π‘›βˆ’1} and 𝑅(𝑛,π‘š,π‘˜)=𝑃{𝑁(𝑛)=π‘š,π‘Šπ‘˜>𝑛}. By conditioning on the values of 𝐼𝑛, 𝑃𝑁(𝑛,π‘š,π‘˜)=𝑃(𝑛)=π‘š,π‘Šπ‘˜ξ€Ύξƒ―>π‘›βˆ’1=𝑃𝑛𝑗=1𝐼𝑗=π‘š,π‘›βˆ’1𝑗=1π‘Œπ‘—ξƒ°ξƒ―β‰€π‘˜=π‘π‘ƒπ‘›βˆ’1𝑗=1𝐼𝑗=π‘šβˆ’1,π‘›βˆ’1𝑗=1π‘Œπ‘—ξƒ°ξƒ―β‰€π‘˜+(1βˆ’π‘)π‘ƒπ‘›βˆ’1𝑗=1𝐼𝑗=π‘š,π‘›βˆ’1𝑗=1π‘Œπ‘—ξƒ°β‰€π‘˜=𝑝𝑃(π‘›βˆ’1,π‘šβˆ’1,π‘˜)+(1βˆ’π‘)𝑃(π‘›βˆ’1,π‘š,π‘˜).(2.15) On the other hand, 𝑅(𝑛,π‘š,π‘˜)=𝑃𝑁(𝑛)=π‘š,π‘Šπ‘˜ξ€Ύξƒ―>𝑛=𝑃𝑛𝑗=1𝐼𝑗=π‘š,𝑛𝑗=1π‘Œπ‘—ξƒ°ξƒ―β‰€π‘˜=𝑃𝑛𝑗=1𝐼𝑗=π‘š,𝑛𝑗=1πΌπ‘—π΅π‘—β‰€π‘˜,𝐼𝑛=1+𝑃𝑛𝑗=1𝐼𝑗=π‘š,𝑛𝑗=1πΌπ‘—π΅π‘—β‰€π‘˜,𝐼𝑛=0=π‘ƒπ‘›βˆ’1𝑗=1𝐼𝑗=π‘šβˆ’1,π‘›βˆ’1𝑗=1πΌπ‘—π΅π‘—β‰€π‘˜βˆ’π΅π‘›ξƒ°π‘ƒξ€½πΌπ‘›ξ€Ύξƒ―=1+π‘ƒπ‘›βˆ’1𝑗=1𝐼𝑗=π‘š,π‘›βˆ’1𝑗=1πΌπ‘—π΅π‘—ξƒ°π‘ƒξ€½πΌβ‰€π‘˜π‘›ξ€Ύ=0=𝑝min(π‘˜,𝑏𝑒)𝑏=1𝑃𝑁(π‘›βˆ’1)=π‘šβˆ’1,π‘Šπ‘˜βˆ’π‘ξ€Ύπ‘“>π‘›βˆ’1𝐡(𝑏)+(1βˆ’π‘)𝑃𝑁(π‘›βˆ’1)=π‘š,π‘Šπ‘˜ξ€Ύ,>π‘›βˆ’1(2.16) for 𝑛β‰₯π‘š. Thus, the proof is completed.

Before proceeding with the distribution of 𝑆(π‘Šπ‘˜), it should be noted that the random variable βˆ‘π‘†(𝑛)=𝑁(𝑛)𝑗=1𝐡𝑗=βˆ‘π‘›π‘—=1π‘Œπ‘— denotes the total shock up to time 𝑛 and 𝑃{𝑆(𝑛)=𝑠}=𝑝min(𝑠,𝑏𝑒)𝑏=1𝑃{𝑆(π‘›βˆ’1)=π‘ βˆ’π‘}𝑓𝐡(𝑏)+(1βˆ’π‘)𝑃{𝑆(π‘›βˆ’1)=𝑠},(2.17) for 0<𝑠≀𝑛 and 𝑃{𝑆(𝑛)=0}=(1βˆ’π‘)𝑛.

Theorem 2.5. For 𝑠>π‘˜, π‘ƒξ€½π‘†ξ€·π‘Šπ‘˜ξ€Έξ€Ύ==π‘ βˆžξ“π‘›=1π‘„βˆ—(𝑛,𝑠,π‘˜),(2.18) where π‘„βˆ—(𝑛,𝑠,π‘˜)=𝑝min(𝑠,𝑏𝑒)𝑏=π‘ βˆ’π‘˜π‘ƒ{𝑆(π‘›βˆ’1)=π‘ βˆ’π‘}𝑓𝐡(𝑏).(2.19)

Proof. By the definition of 𝑆(π‘Šπ‘˜), π‘ƒξ€½π‘†ξ€·π‘Šπ‘˜ξ€Έξ€Ύ==π‘ βˆžξ“π‘›=1𝑃𝑆(𝑛)=𝑠,π‘Šπ‘˜ξ€Ύ.=𝑛(2.20) For 𝑠>π‘˜, π‘„βˆ—ξ€½π‘†(𝑛,𝑠,π‘˜)=𝑃(𝑛)=𝑠,π‘Šπ‘˜ξ€Ύξ€½=𝑛=𝑃{𝑆(𝑛)=𝑠,𝑆(π‘›βˆ’1)β‰€π‘˜,𝑆(𝑛)>π‘˜}=𝑃{𝑆(𝑛)=𝑠,𝑆(π‘›βˆ’1)β‰€π‘˜}=𝑃𝑆(π‘›βˆ’1)+π‘Œπ‘›ξ€Ύξ€½=𝑠,𝑆(π‘›βˆ’1)β‰€π‘˜=𝑝𝑃𝑆(π‘›βˆ’1)=π‘ βˆ’π΅π‘›ξ€Ύ,𝑆(π‘›βˆ’1)β‰€π‘˜+(1βˆ’π‘)𝑃{𝑆(π‘›βˆ’1)=𝑠,𝑆(π‘›βˆ’1)β‰€π‘˜}.(2.21) The proof follows by conditioning on 𝐡𝑛 and noting that 𝑃{𝑆(π‘›βˆ’1)=𝑠,𝑆(π‘›βˆ’1)β‰€π‘˜}=0 for 𝑠>π‘˜.

The following result readily follows from the definitions of 𝑁(π‘Šπ‘˜) and 𝑆(π‘Šπ‘˜) and Wald’s equation.

Proposition 2.6. For π‘˜>0, πΈξ€·π‘ξ€·π‘Šπ‘˜ξ€·π‘Šξ€Έξ€Έ=π‘πΈπ‘˜ξ€Έ,πΈξ€·π‘†ξ€·π‘Šπ‘˜ξ€·π‘Šξ€Έξ€Έ=π‘πΈπ‘˜ξ€ΈπΈ(𝐡).(2.22)

In Table 1 we compute 𝑀𝑇𝑇𝐹=𝐸(π‘Šπ‘˜), 𝐸(𝑁(π‘Šπ‘˜)), and 𝐸(𝑆(π‘Šπ‘˜)) whenever the shock size random variable 𝐡 has a geometric distribution with mean 𝐸(𝐡)=1/(1βˆ’π›Ό). From Table 1 we observe that an increase in π‘˜ leads to an increase in MTTF of the system. If the probability of observing a shock in a period increases, then the MTTF decreases. We also observe that MTTF is proportional to 𝑝. Therefore, for the same shock size distribution the expected number of shocks 𝐸(𝑁(π‘Šπ‘˜)) and expected total shock 𝐸(𝑆(π‘Šπ‘˜)) remain the same for different values of 𝑝.

3. Mixed Shock Model

For π‘˜β‰€π‘š, the mixed shock model is same as the cumulative shock model. Thus we assume that π‘˜>π‘š. The following is a recursive equation for the survival probability of the system under mixed shock model.

Theorem 3.1. For π‘˜>π‘šβ‰₯1 and 𝑛β‰₯1, π‘ƒξ€½π‘π‘˜,π‘šξ€Ύ>𝑛=𝑝min(π‘š,𝑏𝑒)𝑏=1π‘ƒξ€½π‘π‘˜βˆ’π‘,π‘šξ€Ύπ‘“>π‘›βˆ’1𝐡𝑍(𝑏)+(1βˆ’π‘)π‘ƒπ‘˜,π‘šξ€Ύ,>π‘›βˆ’1(3.1) and 𝑃{π‘π‘˜,π‘š>0}=1, where βˆ‘π‘¦π‘=π‘₯=0 if π‘₯>𝑦.

Proof. For 𝑛β‰₯1, π‘ƒξ€½π‘π‘˜,π‘šξ€Ύξ€½π‘Š>𝑛=π‘ƒπ‘˜>𝑛,π‘‡π‘šξ€Ύξƒ―>𝑛=𝑃𝑛𝑗=1π‘Œπ‘—β‰€π‘˜,π‘Œ1β‰€π‘š,…,π‘Œπ‘›ξƒ°.β‰€π‘š(3.2)
By conditioning on the values of 𝐼𝑛, π‘ƒξ€½π‘π‘˜,π‘šξ€Ύξƒ―>𝑛=𝑃𝑛𝑗=1πΌπ‘—π΅π‘—β‰€π‘˜,π‘Œ1β‰€π‘š,…,π‘Œπ‘›β‰€π‘š,𝐼𝑛=1+𝑃𝑛𝑗=1πΌπ‘—π΅π‘—β‰€π‘˜,π‘Œ1β‰€π‘š,…,π‘Œπ‘›β‰€π‘š,𝐼𝑛=0=π‘ƒπ‘›βˆ’1𝑗=1πΌπ‘—π΅π‘—β‰€π‘˜βˆ’π΅π‘›,π‘Œ1β‰€π‘š,…,π‘Œπ‘›βˆ’1β‰€π‘š,π΅π‘›ξƒ°π‘ƒξ€½πΌβ‰€π‘šπ‘›ξ€Ύξƒ―=1+π‘ƒπ‘›βˆ’1𝑗=1πΌπ‘—π΅π‘—β‰€π‘˜,π‘Œ1β‰€π‘š,…,π‘Œπ‘›βˆ’1ξƒ°π‘ƒξ€½πΌβ‰€π‘šπ‘›ξ€Ύ.=0(3.3) By conditioning on 𝐡𝑛, π‘ƒξ€½π‘π‘˜,π‘šξ€Ύ>𝑛=𝑝min(π‘˜,π‘š,𝑏𝑒)𝑏=1π‘ƒξƒ―π‘›βˆ’1𝑗=1πΌπ‘—π΅π‘—β‰€π‘˜βˆ’π‘,π‘Œ1β‰€π‘š,…,π‘Œπ‘›βˆ’1ξƒ°π‘“β‰€π‘šπ΅π‘›ξƒ―(𝑏)+(1βˆ’π‘)π‘ƒπ‘›βˆ’1𝑗=1πΌπ‘—π΅π‘—β‰€π‘˜,π‘Œ1β‰€π‘š,…,π‘Œπ‘›βˆ’1ξƒ°.β‰€π‘š(3.4) Thus, the proof is completed.

The following result can be proved similar to Proposition 2.2, and hence its proof is omitted.

Proposition 3.2. For π‘˜>π‘šβ‰₯1, the MTTF of the system under mixed shock model can be computed from πΈξ€·π‘π‘˜,π‘šξ€Έ=1𝑝+min(π‘š,𝑏𝑒)𝑏=1πΈξ€·π‘π‘˜βˆ’π‘,π‘šξ€Έπ‘“π΅(𝑏),(3.5) with 𝐸(𝑍0,π‘š)=1/𝑝, where βˆ‘π‘¦π‘=π‘₯=0 if π‘₯>𝑦.

In Table 2, using Proposition 3.2, we compute the MTTF of the system under mixed shock model when the shock size random variable 𝐡 has a geometric distribution with mean 𝐸(𝐡)=1/(1βˆ’π›Ό).

Theorem 3.3. For 𝑛β‰₯1, π‘ƒξ€½π‘ξ€·π‘π‘˜,π‘šξ€Έξ€Ύ==π‘›βˆžξ“π‘ =𝑛[],π‘π‘ˆ(π‘›βˆ’1,π‘ βˆ’1,π‘˜,π‘š)+(1βˆ’π‘)π‘ˆ(𝑛,π‘ βˆ’1,π‘˜,π‘š)βˆ’π‘ˆ(𝑛,𝑠,π‘˜,π‘š)(3.6) where π‘ˆ(𝑛,𝑠,π‘˜,π‘š)=𝑝min(π‘š,𝑏𝑒)𝑏=1π‘ˆ(π‘›βˆ’1,π‘ βˆ’1,π‘˜βˆ’π‘,π‘š)𝑓𝐡(𝑏)+(1βˆ’π‘)π‘ˆ(𝑛,π‘ βˆ’1,π‘˜,π‘š).(3.7)

Proof. By conditioning on π‘π‘˜,π‘š, π‘ƒξ€½π‘ξ€·π‘π‘˜,π‘šξ€Έξ€Ύ==π‘›βˆžξ“π‘ =𝑛𝑃𝑁(𝑠)=𝑛,π‘π‘˜,π‘šξ€Ύ.=𝑠(3.8) It is clear that 𝑃𝑁(𝑠)=𝑛,π‘π‘˜,π‘šξ€Ύξ€½π‘=𝑠=𝑃(𝑠)=𝑛,π‘π‘˜,π‘šξ€Ύξ€½π‘>π‘ βˆ’1βˆ’π‘ƒ(𝑠)=𝑛,π‘π‘˜,π‘šξ€Ύ>𝑠.(3.9) By the definition of π‘π‘˜,π‘š, ξ€½π‘ˆ(𝑛,𝑠,π‘˜,π‘š)=𝑃𝑁(𝑠)=𝑛,π‘π‘˜,π‘šξ€Ύξƒ―>𝑠=𝑃𝑠𝑗=1𝐼𝑗=𝑛,𝑠𝑗=1π‘Œπ‘—β‰€π‘˜,π‘Œ1β‰€π‘š,…,π‘Œπ‘ ξƒ°ξƒ―β‰€π‘š=π‘π‘ƒπ‘ βˆ’1𝑗=1𝐼𝑗=π‘›βˆ’1,π‘ βˆ’1𝑗=1π‘Œπ‘—β‰€π‘˜βˆ’π΅π‘ ,π‘Œ1β‰€π‘š,…,π‘Œπ‘ βˆ’1β‰€π‘š,π΅π‘ ξƒ°ξƒ―β‰€π‘š+(1βˆ’π‘)π‘ƒπ‘ βˆ’1𝑗=1𝐼𝑗=𝑛,π‘ βˆ’1𝑗=1π‘Œπ‘—β‰€π‘˜,π‘Œ1β‰€π‘š,…,π‘Œπ‘ βˆ’1ξƒ°β‰€π‘š=𝑝min(π‘š,𝑏𝑒)𝑏=1π‘ƒξƒ―π‘ βˆ’1𝑗=1𝐼𝑗=π‘›βˆ’1,π‘ βˆ’1𝑗=1π‘Œπ‘—β‰€π‘˜βˆ’π‘,π‘Œ1β‰€π‘š,…,π‘Œπ‘ βˆ’1ξƒ°π‘“β‰€π‘šπ΅ξƒ―(𝑏)+(1βˆ’π‘)π‘ƒπ‘ βˆ’1𝑗=1𝐼𝑗=𝑛,π‘ βˆ’1𝑗=1π‘Œπ‘—β‰€π‘˜,π‘Œ1β‰€π‘š,…,π‘Œπ‘ βˆ’1ξƒ°β‰€π‘š=𝑝min(π‘š,𝑏𝑒)𝑏=1𝑃𝑁(π‘ βˆ’1)=π‘›βˆ’1,π‘π‘˜βˆ’π‘,π‘šξ€Ύπ‘“>π‘ βˆ’1𝐡(𝑏)+(1βˆ’π‘)𝑃𝑁(π‘ βˆ’1)=𝑛,π‘π‘˜,π‘šξ€Ύ.>π‘ βˆ’1(3.10) On the other hand, 𝑃𝑁(𝑠)=𝑛,π‘π‘˜,π‘šξ€Ύξƒ―>π‘ βˆ’1=𝑃𝑠𝑗=1𝐼𝑗=𝑛,π‘ βˆ’1𝑗=1π‘Œπ‘—β‰€π‘˜,π‘Œ1β‰€π‘š,…,π‘Œπ‘ βˆ’1ξƒ°ξ€½β‰€π‘š=𝑝𝑃𝑁(π‘ βˆ’1)=π‘›βˆ’1,π‘π‘˜,π‘šξ€Ύξ€½>π‘ βˆ’1+(1βˆ’π‘)𝑃𝑁(π‘ βˆ’1)=𝑛,π‘π‘˜,π‘šξ€Ύ>π‘ βˆ’1=π‘π‘ˆ(π‘›βˆ’1,π‘ βˆ’1,π‘˜,π‘š)+(1βˆ’π‘)π‘ˆ(𝑛,π‘ βˆ’1,π‘˜,π‘š).(3.11) Thus the proof is completed.

Before the derivation of the distribution of 𝑆(π‘π‘˜,π‘š), we note the following recursion which will be useful in the sequel: 𝑉𝑆(𝑛,𝑠,π‘š)=𝑃(𝑛)=𝑠,π‘Œ1β‰€π‘š,…,π‘Œπ‘›ξ€Ύβ‰€π‘š=𝑝min(π‘š,𝑠,𝑏𝑒)𝑏=1𝑉(π‘›βˆ’1,π‘ βˆ’π‘,π‘š)𝑓𝐡(𝑏)+(1βˆ’π‘)𝑉(π‘›βˆ’1,𝑠,π‘š).(3.12)

Theorem 3.4. For 𝑠>π‘˜, π‘ƒξ€½π‘†ξ€·π‘π‘˜,π‘šξ€Έξ€Ύ=𝑠=π‘βˆžξ“π‘π‘›=1𝑒𝑏=π‘ βˆ’π‘˜π‘‰(π‘›βˆ’1,π‘ βˆ’π‘,π‘š)𝑓𝐡(𝑏),(3.13) for π‘š<π‘ β‰€π‘˜, π‘ƒξ€½π‘†ξ€·π‘π‘˜,π‘šξ€Έξ€Ύ=𝑠=π‘βˆžξ“π‘›=1min(𝑠,𝑏𝑒)𝑏=π‘š+1𝑉(π‘›βˆ’1,π‘ βˆ’π‘,π‘š)𝑓𝐡(𝑏).(3.14)

Proof. By the definition of 𝑆(π‘π‘˜,π‘š), π‘ƒξ€½π‘†ξ€·π‘π‘˜,π‘šξ€Έξ€Ύξ€½π‘†ξ€·π‘Š=𝑠=π‘ƒπ‘˜ξ€Έ=𝑠,π‘Šπ‘˜β‰€π‘‡π‘šξ€Ύξ€½π‘†ξ€·π‘‡+π‘ƒπ‘šξ€Έ=𝑠,π‘‡π‘š<π‘Šπ‘˜ξ€Ύ=ξ‚»π‘ƒξ€½π‘†ξ€·π‘Šπ‘˜ξ€Έ=𝑠,π‘Šπ‘˜β‰€π‘‡π‘šξ€Ύπ‘ƒξ€½π‘†ξ€·π‘‡,if𝑠>π‘˜π‘šξ€Έ=𝑠,π‘‡π‘š<π‘Šπ‘˜ξ€Ύ,ifπ‘š<π‘ β‰€π‘˜.(3.15) For 𝑠>π‘˜, π‘ƒξ€½π‘†ξ€·π‘Šπ‘˜ξ€Έ=𝑠,π‘Šπ‘˜β‰€π‘‡π‘šξ€Ύ=βˆžξ“π‘›=1𝑃𝑆(𝑛)=𝑠,π‘‡π‘šβ‰₯𝑛,π‘Šπ‘˜ξ€Ύ==π‘›βˆžξ“π‘›=1𝑃𝑆(𝑛)=𝑠,π‘Œ1β‰€π‘š,…,π‘Œπ‘›βˆ’1β‰€π‘š,π‘Šπ‘˜ξ€Ύ==π‘›βˆžξ“π‘›=1𝑃𝑆(𝑛)=𝑠,π‘Œ1β‰€π‘š,…,π‘Œπ‘›βˆ’1ξ€Ύ=β‰€π‘š,𝑆(π‘›βˆ’1)β‰€π‘˜βˆžξ“π‘›=1𝑃𝑆(π‘›βˆ’1)+π‘Œπ‘›=𝑠,𝑆(π‘›βˆ’1)β‰€π‘˜,π‘Œ1β‰€π‘š,…,π‘Œπ‘›βˆ’1ξ€Ύβ‰€π‘š=π‘βˆžξ“π‘π‘›=1𝑒𝑏=π‘ βˆ’π‘˜π‘ƒξ€½π‘†(π‘›βˆ’1)=π‘ βˆ’π‘,π‘Œ1β‰€π‘š,…,π‘Œπ‘›βˆ’1ξ€Ύπ‘“β‰€π‘šπ΅(𝑏)=π‘βˆžξ“π‘π‘›=1𝑒𝑏=π‘ βˆ’π‘˜π‘‰(π‘›βˆ’1,π‘ βˆ’π‘,π‘š)𝑓𝐡(𝑏).(3.16) Similarly, for π‘š<π‘ β‰€π‘˜, π‘ƒξ€½π‘†ξ€·π‘‡π‘šξ€Έ=𝑠,π‘‡π‘š<π‘Šπ‘˜ξ€Ύ=βˆžξ“π‘›=1𝑃𝑆(𝑛)=𝑠,π‘Šπ‘˜>𝑛,π‘‡π‘šξ€Ύ==π‘›βˆžξ“π‘›=1𝑃𝑆(𝑛)=𝑠,𝑆(𝑛)β‰€π‘˜,π‘Œ1β‰€π‘š,…,π‘Œπ‘›βˆ’1β‰€π‘š,π‘Œπ‘›ξ€Ύ=>π‘šβˆžξ“π‘›=1𝑃𝑆(π‘›βˆ’1)+π‘Œπ‘›=𝑠,π‘Œ1β‰€π‘š,…,π‘Œπ‘›βˆ’1β‰€π‘š,π‘Œπ‘›ξ€Ύ>π‘š=π‘βˆžξ“π‘›=1min(𝑠,𝑏𝑒)𝑏=π‘š+1𝑃𝑆(π‘›βˆ’1)=π‘ βˆ’π‘,π‘Œ1β‰€π‘š,…,π‘Œπ‘›βˆ’1ξ€Ύπ‘“β‰€π‘šπ΅(𝑏)=π‘βˆžξ“π‘›=1min(𝑠,𝑏𝑒)𝑏=π‘š+1𝑉(π‘›βˆ’1,π‘ βˆ’π‘,π‘š)𝑓𝐡(𝑏).(3.17) Thus, the proof is completed.

4. Summary and Conclusions

In this paper, we studied the life behavior of a system under discrete time cumulative and mixed shock models. The probability of getting a shock in any period is 𝑝, and the shock occurrences are assumed to be independent over the periods. The size of the shock occuring in a period follows a discrete probability distribution and the system’s lifetime coincides with the waiting time random variable which represents the time until the cumulative sum of shocks exceeds a specified level (cumulative shock model). We derived recurrence formulae for the survival function and the MTTF of the system. We also obtained recurrences for the distributions and expected values of the two related quantities which represent the number of shocks and the total shock that the system is subjected until failure. The results were illustrated for the case when the shock size distribution is geometric. We have also obtained a recurrence for the survival function of the system under a mixed shock model. The assumption of discrete shock size distribution enables us to obtain recursive formulae. However, the consideration of continuous shock size distribution might be of special interest in some applications. Therefore, a possible future work can be on discrete time shock models with a continuous shock size distribution.

In the model that was studied in the paper shock occurrence indicators are assumed to be independent and identical with a constant probability 𝑝. As a future work, the case in which the shock occurrence indicators form a Markov chain can also be considered.

Acknowledgment

The author thanks referees for their very useful comments and suggestions, which improved the paper.