About this Journal Submit a Manuscript Table of Contents
Discrete Dynamics in Nature and Society
Volume 2012 (2012), Article ID 287502, 16 pages
http://dx.doi.org/10.1155/2012/287502
Research Article

Using Cellular Automata to Investigate Pedestrian Conflicts with Vehicles in Crosswalk at Signalized Intersection

MOE Key Laboratory for Urban Transportation Complex Systems Theory and Technology, Beijing Jiaotong University, Beijing 100044, China

Received 1 August 2012; Accepted 18 October 2012

Academic Editor: Bo Yang

Copyright © 2012 Xiaomeng Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Y. Zhang, Road Traffic Safety Management Evaluation System, People's Traffic Press, Beijing, China, 2005.
  2. S. R. Perkins and J. I. Harris, Traffic Conflict Characteristics: Accident Potential at Intersections, Highway Research Record No. 225, Traffic Safety and Accident Research, 1968, 6 Reports.
  3. F. Amundson and C. Hyden, in Proceedings of the 1st Workshop on Traffic Conflicts, Institute of Economics, Oslo, Norway, 1977.
  4. E. Hauer, “Traffic conflicts and exposure,” Accident Analysis and Prevention, vol. 14, no. 5, pp. 359–364, 1982. View at Publisher · View at Google Scholar · View at Scopus
  5. E. Hauer, Observational before-after Studies in Road Safety, Pergamon, Oxford, UK, 1997.
  6. P. Cooper, “Experience with traffic conflicts in canada with emphasis on post encroachment time techniques,” in International Study of Traffic Conflict Techniques, E. Asmussen, Ed., pp. 75–96, Springer, 1984.
  7. D. Migletz, W. Glauz, and K. Bauer, “Relationships between traffic conflicts and accidents,” Report FHWA/RD-84/042, Federal Highway Administration, Washington, DC, USA, 1985.
  8. M. Ben-Akiva and S. R. Lerman, Discrete Choice Analysis: Theory and Application to Travel Demand, The MIT Press, Cambridge, Mass, USA, 1985.
  9. J. M. Cassidy, S. M. Madanat, M. Wang, and F. Yang, “Unsignalized intersection capacity and level of service: revisiting critical gap,” Transportation Research Record 1484, TRB, National Research Council, Washington, DC, USA, 1995.
  10. H. Mahmassani and Y. Sheffi, “Using gap sequences to estimate gap acceptance functions,” Transportation Research B, vol. 15, no. 3, pp. 143–148, 1981. View at Scopus
  11. L. P. Gao, M. J. Liu, and J. Feng, “Delay modeling of Ped-Veh system based on pedestrian crossing at signalized intersection,” in Proceedings of the 8th International Conference on Traffic and Transportation Studies Changsha (ICTTS '12), Beijing, China, 2012.
  12. J. Y. S. Lee and W. H. K. Lam, “Simulating pedestrian movements at signalized crosswalks in Hong Kong,” Transportation Research Part A, vol. 42, no. 10, pp. 1314–1325, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. W. K. M. Alhajyaseen, M. Asano, and H. Nakamura, “Estimation of left-turning vehicle maneuvers for the assessment of pedestrian safety at intersections,” IATSS Research, vol. 36, no. 1, pp. 66–74, 2012. View at Publisher · View at Google Scholar
  14. H. W. Kruysse, “The subjective evaluation of traffic conflicts based on an internal concept of dangerousness,” Accident Analysis and Prevention, vol. 23, no. 1, pp. 53–65, 1991. View at Publisher · View at Google Scholar · View at Scopus
  15. A.-W. Zheng, J.-Z. Guo, and Z.-M. Niu, “Analysis of traffic conflicting and the influence factors,” Journal of Wuhan University of Science and Technology, vol. 25, no. 4, p. 367, 2002 (Chinese). View at Scopus
  16. G. Q. Zhang, “Determination of the severity of traffic conflict at highway intersections,” Journal of Hefei University of Technology, vol. 31, no. 5, pp. 683–686, 2008 (Chinese).
  17. G. Tiwari, D. Mohan, and J. Fazio, “Conflict analysis for prediction of fatal crash locations in mixed traffic streams,” Accident Analysis and Prevention, vol. 30, no. 2, pp. 207–215, 1998. View at Scopus
  18. Q. Fang and Z. Wu, “Prediction of traffic conflict at intersection based on gray control theory,” Communications Standardization, vol. 6, pp. 174–177, 2008 (Chinese).
  19. W. Cheng and G. Y. Wang, “Prediction of traffic conflicts at intersection based on adaptive neural-fuzzy inference system,” Journal of Highway and Transportation Research and Development, vol. 22, no. 7, pp. 115–117, 2005 (Chinese).
  20. T. M. Mohammed, Development of a conflict rate prediction model at non-signalized intersections [Ph.D. thesis], University of South Florida, 2003.
  21. E. Hauer and P. Garder, “Research into the validity of the traffic conflicts technique,” Accident Analysis and Prevention, vol. 18, no. 6, pp. 471–481, 1986. View at Scopus
  22. T. Zhu, Y. Bai, and X. G. Yang, “Failure analysis on safety assessment method for traffic conflicts at level crossing and its improvement,” China Safety Science Journal, vol. 18, no. 2, pp. 157–161, 2008 (Chinese).
  23. P. Gårder, “Pedestrian safety at traffic signals: a study carried out with the help of a traffic conflicts technique,” Accident Analysis and Prevention, vol. 21, no. 5, pp. 435–444, 1989. View at Scopus
  24. D. Helbing, R. Jiang, and M. Treiber, “Analytical investigation of oscillations in intersecting flows of pedestrian and vehicle traffic,” Physical Review E, vol. 72, no. 4, Article ID 046130, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. P. G. Gipps and B. Marksjö, “A micro-simulation model for pedestrian flows,” Mathematics and Computers in Simulation, vol. 27, no. 2-3, pp. 95–105, 1985. View at Scopus
  26. K. Nagel and M. Schreckenberg, “A cellular automaton model for freeway traffic,” Journal of Physique, vol. 2, no. 12, pp. 2221–2228, 1992.
  27. K. Nagel and S. Rasmussen, “Traffic at the edge of chaos,” in Proceedings of the 4th International Workshop on the Synthesis and Simulation of Living Systems Artificial Life IV, pp. 222–225, 1994.
  28. M. Rickert, K. Nagel, M. Schreckenberg, and A. Latour, “Two-lane traffic simulations using cellular automata,” Los Alamos Unclassified Report 95:4367, Los Alamos National Laboratory, Los Alamos, NM, USA, 1996.
  29. M. Rickert, K. Nagel, M. Schreckenberg, and A. Latour, “Two-lane traffic simulations using cellular automata,” Physica A, vol. 231, p. 534, 1995.
  30. V. J. Blue, M. J. Embrechts, and J. L. Adler, “Cellular automata modeling of pedestrian movements,” in Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, vol. 3, pp. 2320–2323, October 1997. View at Scopus
  31. S. Maerivoet and B. De Moor, “Cellular automata models of road traffic,” Physics Reports, vol. 419, no. 1, pp. 1–64, 2005. View at Publisher · View at Google Scholar
  32. V. J. Blue and J. L. Adler, “Cellular automata microsimulation for modeling bi-directional pedestrian walkways,” Transportation Research B, vol. 35, no. 3, pp. 293–312, 2001. View at Publisher · View at Google Scholar · View at Scopus
  33. K. Yamamoto, S. Kokubo, and K. Nishinari, “Simulation for pedestrian dynamics by real-coded cellular automata (RCA),” Physica A, vol. 379, no. 2, pp. 654–660, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. C. Burstedde, K. Klauck, A. Schadschneider, and J. Zittartz, “Simulation of pedestrian dynamics using a two-dimensional cellular automaton,” Physica A, vol. 295, no. 3-4, pp. 507–525, 2001. View at Publisher · View at Google Scholar · View at Scopus
  35. W. G. Weng, T. Chen, H. Y. Yuan, and W. C. Fan, “Cellular automaton simulation of pedestrian counter flow with different walk velocities,” Physical Review E, vol. 74, no. 3, Article ID 036102, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. D. Chowdhury, L. Santen, and A. Schadschneider, “Statistical physics of vehicular traffic and some related systems,” Physics Reports, vol. 329, no. 4–6, pp. 199–329, 2000. View at Publisher · View at Google Scholar
  37. B. Chopard and A. Masselot, “Cellular automata and lattice Boltzmann methods: a new approach to computational fluid dynamics and particle transport,” Future Generation Computer Systems, vol. 16, no. 2, pp. 249–257, 1999. View at Publisher · View at Google Scholar · View at Scopus
  38. E. F. Codd, Cellular Automata, Academic Press, New York, NY, USA, 1968.
  39. M. Gardner, “Mathematical games-the fantastic combinations of John Conway's new solitaire game, ‘Life’,” Scientific American, vol. 223, pp. 120–123, 1970.
  40. M. Cremer and J. Ludwig, “A fast simulation model for traffic flow on the basis of boolean operations,” Mathematics and Computers in Simulation, vol. 28, no. 4, pp. 297–303, 1986. View at Scopus
  41. D. Helbing and T. Vicsek, “Optimal self-organization,” New Journal of Physics, vol. 1, pp. 13.1–13.17, 1999. View at Scopus
  42. I. Karafyllidis and A. Thanailakis, “A model for predicting forest fire spreading using cellular automata,” Ecological Modelling, vol. 99, no. 1, pp. 87–97, 1997. View at Publisher · View at Google Scholar · View at Scopus
  43. K. Nagel and E. Raschke, “Self-organizing criticality in cloud formation?” Physica A, vol. 182, no. 4, pp. 519–531, 1992. View at Scopus
  44. S. Gobron and N. Chiba, “Crack pattern simulation based on 3D surface cellular automata,” Visual Computer, vol. 17, no. 5, pp. 287–309, 2001. View at Publisher · View at Google Scholar · View at Scopus
  45. K. Nishinari, D. Chowdhury, and A. Schadschneider, “Cluster formation and anomalous fundamental diagram in an ant-trail model,” Physical Review E, vol. 67, no. 3, Article ID 036120, 2003. View at Scopus
  46. L. Yang, W. Fang, R. Huang, and Z. Deng, “Occupant evacuation model based on cellular automata in fire,” Chinese Science Bulletin, vol. 47, no. 17, pp. 1484–1488, 2002. View at Publisher · View at Google Scholar · View at Scopus
  47. D. F. Preusser, W. A. Leaf, K. B. DeBartolo, R. D. Blomberg, and M. M. Levy, “The effect of right-turn-on-red on pedestrian and bicyclist accidents,” Journal of Safety Research, vol. 13, no. 2, pp. 45–55, 1982. View at Scopus
  48. J. Autey, T. Sayed, and M. H. Zaki, “Safety evaluation of right-turn smart channels using automated traffic conflict analysis,” Accident Analysis & Prevention, vol. 45, pp. 120–130, 2012.
  49. Y. Ni and K. P. Li, “Dealing with conflict between pedestrian and right turning vehicle in signalized intersection,” Computer and Communications, vol. 25, no. 1, pp. 22–26, 2007 (Chinese).
  50. E. Brockfeld, R. Barlovic, A. Schadschneider, and M. Schreckenberg, “Optimizing traffic lights in a cellular automaton model for city traffic,” Physical Review E, vol. 64, no. 5, Article ID 056132, 2001. View at Scopus
  51. O. Biham, A. A. Middleton, and D. Levine, “Self-organization and a dynamical transition in traffic-flow models,” Physical Review A, vol. 46, no. 10, pp. R6124–R6127, 1992. View at Publisher · View at Google Scholar · View at Scopus
  52. D. Chowdhury and A. Schadschneider, “Self-organization of traffic jams in cities: effects of stochastic dynamics and signal periods,” Physical Review E, vol. 59, no. 2, pp. R1311–R1314, 1999. View at Scopus