About this Journal Submit a Manuscript Table of Contents
Discrete Dynamics in Nature and Society
Volume 2012 (2012), Article ID 309415, 15 pages
http://dx.doi.org/10.1155/2012/309415
Research Article

Dynamic Recognition Model of Driver’s Propensity under Multilane Traffic Environments

1School of Transportation and Vehicle Engineering, Shandong University of Technology, Zibo 255091, China
2Department of Civil and Environmental Engineering, School of Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA

Received 2 August 2012; Accepted 22 October 2012

Academic Editor: Wuhong Wang

Copyright © 2012 Xiaoyuan Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. X. Q. Feng and C. Q. Fang, “Cluster analysis of evaluation index on driver's characteristics,” Communications science and technology Heilongjiang, no. 11, pp. 161–163, 2007.
  2. B. G. Hillel and D. Shinar, “The tendency of drivers to pass other vehicles,” Transportation Research F, vol. 8, no. 6, pp. 429–439, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. C. Pêcher, C. Lemercier, and J. M. Cellier, “Emotions drive attention: effects on driver's behaviour,” Safety Science, vol. 47, no. 9, pp. 1254–1259, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. O. T. Ben-Ari and E. Shay, “The association between risky driver and pedestrian behaviors: the case of Ultra-Orthodox Jewish road users,” Transportation Research F, vol. 15, no. 2, pp. 188–195, 2012. View at Publisher · View at Google Scholar
  5. I. A. Kaysi and A. S. Abbany, “Modeling aggressive driver behavior at unsignalized intersections,” Accident Analysis and Prevention, vol. 39, no. 4, pp. 671–678, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. H. W. Warner, T. Özkan, T. Lajunen, and G. Tzamalouka, “Cross-cultural comparison of drivers' tendency to commit different aberrant driving behaviours,” Transportation Research F, vol. 14, no. 5, pp. 390–399, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. X. Y. Wang and J. L. Zhang. Extraction a, “Extraction and recognition methods of vehicle driving tendency feature based on driver-vehicle-environment dynamic data under car following,” International Journal of Computational Intelligence Systems, vol. 4, no. 6, pp. 1269–1281, 2011. View at Publisher · View at Google Scholar
  8. J. L. Zhang and X. Y. Wang, “The feature extraction and dynamic deduction method of vehicle driving tendency under time variable free flow condition,” Journal of Beijing Institute of Technology, vol. 20, no. 1, pp. 127–133, 2011.
  9. Y. Y. Zhang, X. Y. Wang, and J. L. Zhang, “Verification method of vehicle driving tendency recognition model under free flow,” Journal of Computer Application, vol. 32, no. 2, pp. 578–580, 2012.
  10. Y. Y. Zhang, X. Y. Wang, and J. L. Zhang, “The verification method of vehicle driving tendency recognition model based on driving simulated experiments under free flow,” Journal of Wuhan University of Technology, vol. 33, no. 9, pp. 82–86, 2011.
  11. Y. Q. Feng, C. Q. Fang, et al., “Cluster analysis of drivers characteristics evaluation,” Communications Science and Technology Heilongjiang, no. 11, pp. 161–163, 2007.
  12. X. M. Chen, L. Gao, and S. B. Wu, “Research on subjective judgment of driving tenseness and control of vehicle motion,” Journal of Highway and Transportation Research and Development, vol. 24, no. 8, pp. 144–148, 2007.
  13. W. H. Wang, Q. Cao, K. Ikeuchi, and H. Bubb, “Reliability and safety analysis methodology for identification of drivers' erroneous actions,” International Journal of Automotive Technology, vol. 11, no. 6, pp. 873–881, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Cai and Y. Lin, “Modeling of operators emotion and task performance in a virtual driving environment,” International Journal of Human Computer Studies, vol. 69, no. 9, pp. 571–586, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. Z. B. Zhou, C. Q. Ma, J. L. Zhou, and D. D. Dong, “Dynamic fault tree analysis based on dynamic Bayesian networks,” Xitong Gongcheng Lilun yu Shijian/System Engineering Theory and Practice, vol. 28, no. 2, pp. 35–42, 2008. View at Scopus
  16. S. Gao, Q. Pan, Z. J. Li, and Q. K. Xiao, “Optimal state estimation of moving targets based on DBN,” Journal of Detection and Control, vol. 29, no. 4, pp. 74–76, 2007.