About this Journal Submit a Manuscript Table of Contents
Discrete Dynamics in Nature and Society
Volume 2012 (2012), Article ID 432634, 12 pages
http://dx.doi.org/10.1155/2012/432634
Research Article

Driver Cognitive Distraction Detection Using Driving Performance Measures

Transportation College, Jilin University, Changchun, Jilin 130022, China

Received 17 August 2012; Revised 26 October 2012; Accepted 27 October 2012

Academic Editor: Wuhong Wang

Copyright © 2012 Lisheng Jin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Wollmer, C. Blaschke, T. Schindl et al., “Online driver distraction detection using long short-term memory,” IEEE Transactions on Intelligent Transportation Systems, vol. 12, no. 2, pp. 574–582, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. H. Hou, L. Jin, Q. Niu, Y. Sun, and M. Lu, “Driver intention recognition method using continuous Hidden Markov model,” International Journal of Computational Intelligence Systems, vol. 4, no. 3, pp. 386–393, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. L. S. Jin, Q. N. Niu, H. J. Hou, S. X. Hu, and F. R. Wang, “Study on vehicle front pedestrian detection based on 3D laser scanner,” in Proceedings of the International Conference on Transportation, Mechanical, and Electrical Engineering (TMEE '11), pp. 735–738, Changchun, China, December 2011.
  4. Y. Zhang, Y. OwecHko, and J. Zhang, “Driver cognitive workload estimation: a data-driven perspective,” in Proceedings of the 7th International IEEE Conference on Intelligent Transportation Systems (ITSC '04), pp. 642–647, Washington, DC, USA, October 2004. View at Scopus
  5. M. A. Regan, C. Hallett, and C. P. Gordon, “Driver distraction and driver inattention: definition, relationship and taxonomy,” Accident Analysis and Prevention, vol. 43, no. 5, pp. 1771–1781, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. Liang, M. L. Reyes, and J. D. Lee, “Real-time detection of driver cognitive distraction using support vector machines,” IEEE Transactions on Intelligent Transportation Systems, vol. 8, no. 2, pp. 340–350, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. W. Wang, X. Jiang, S. Xia, and Q. Cao, “Incident tree model and incident tree analysis method for quantified risk assessment: an in-depth accident study in traffic operation,” Safety Science, vol. 48, no. 10, pp. 1248–1262, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. B. Donmez, L. Boyle, and J. D. Lee, “Taxonomy of mitigation strategies for driver distraction,” in Proceedings of the 47th Annual Meeting on Human Factors and Ergonomics Society, pp. 1865–1869, Denver, Colo, USA, 2003.
  9. T. W. Victor, Keeping eye and mind on the road [doctoral thesis], Uppsala Universitet, Interfaculty Units, Acta Universitatis Upsaliensis, Uppsala, Sweden, 2005.
  10. D. Haigney and S. J. Westerman, “Mobile (cellular) phone use and driving: a critical review of research methodology,” Ergonomics, vol. 44, no. 2, pp. 132–143, 2001. View at Scopus
  11. Y. Dong, Z. Hu, K. Uchimura, and N. Murayama, “Driver inattention monitoring system for intelligent vehicles: a review,” IEEE Transactions on Intelligent Transportation Systems, vol. 12, no. 2, pp. 596–614, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. M. M. Hayhoe, “Advances in relating eye movements and cognition,” Infancy, vol. 6, no. 2, pp. 267–274, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Azman, Q. Meng, and E. Edirisinghe, “Non intrusive physiological measurement for driver cognitive distraction detection: eye and mouth movements,” in Proceedings of the 3rd International Conference on Advanced Computer Theory and Engineering (ICACTE '10), vol. 3, pp. V3595–V3599, August 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. L. Fletcher and A. Zelinsky, “Driver state monitoring to mitigate distraction,” in Proceedings of the Internal Conference on the Distractions in Driving, pp. 487–523, Sydney, Australia, 2007.
  15. K. Young, M. Regan, and M. Hammer, Driver Distraction: A Review of Literature, Accident Research Centre—Monash University, Victoria, Australia, 2003.
  16. W. J. Horrey and D. J. Simons, “Examining cognitive interference and adaptive safety behaviours in tactical vehicle control,” Ergonomics, vol. 50, no. 8, pp. 1340–1350, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. D. L. Strayer and F. A. Drews, “Profiles in driver distraction: effects of cell phone conversations on younger and older drivers,” Human Factors, vol. 46, no. 4, pp. 640–649, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. W. Wang, W. Zhang, H. Guo, H. Bubb, and K. Ikeuchi, “A safety-based approaching behavioural model with various driving characteristics,” Transportation Research C, vol. 19, no. 6, pp. 1202–1214, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. C. Liu, “Comparative study of the effects of auditory, visual and multimodality displays on drivers' performance in advanced traveler information systems,” Ergonomics, vol. 44, no. 4, pp. 425–442, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Miyaji, H. Kawanaka, and K. Oguri, “Driver's cognitive distraction detection using physiological features by the AdaBoost,” in Proceedings of the 12th International IEEE Conference on Intelligent Transportation Systems (ITSC '09), pp. 90–95, St. Louis, Miss, USA, October 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Sathyanarayana, S. Nageswaren, H. Ghasemzadeh, R. Jafari, and J. H. L. Hansen, “Body sensor networks for driver distraction identification,” in Proceedings of the IEEE International Conference on Vehicular Electronics and Safety (ICVES '08), pp. 120–125, September 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. V. N. Vapnik, The Nature of Statistical Learning Theory, Springer, New York, NY, USA, 1995.
  23. Y. L. Liang, Detecting driver distraction [doctoral thesis], University of Iowa, 2009.
  24. C. C. Chang and C. J. Lin, “LIBSVM: a library for support vector machines,” http://www.csie.ntu.edu.tw/~cjlin/libsvm/index.html#GUI.
  25. C. W. Hsu, C. C. Chang, and C. J. Lin, “A practical guide to support vector classification,” http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf.
  26. J. Berglund, In-vehicle prediction of truck driver sleepiness-steering related variables [M.S. thesis], University of Linkoping, 2007.