About this Journal Submit a Manuscript Table of Contents
Discrete Dynamics in Nature and Society
Volume 2012 (2012), Article ID 549374, 13 pages
http://dx.doi.org/10.1155/2012/549374
Research Article

An Optimization to Schedule Train Operations with Phase-Regular Framework for Intercity Rail Lines

School of Traffic and Transportation, Lanzhou Jiaotong University, Lanzhou 730070, China

Received 7 September 2012; Accepted 15 October 2012

Academic Editor: Wuhong Wang

Copyright © 2012 Huimin Niu and Minghui Zhang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. S. A. Ghoneim and S. C. Wirasinghe, “Optimum zone structure during peak periods for existing urban rail lines,” Transportation Research B, vol. 20, no. 1, pp. 7–18, 1986. View at Scopus
  2. J. W. Goossens, S. van Hoesel, and L. Kroon, “On solving multi-type railway line planning problems,” European Journal of Operational Research, vol. 168, no. 2, pp. 403–424, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. C. Liebchen, “The first optimized railway timetable in practice,” Transportation Science, vol. 42, no. 4, pp. 420–435, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. M. T. Claessens, N. M. Van Dijk, and P. J. Zwaneveld, “Cost optimal allocation of rail passenger lines,” European Journal of Operational Research, vol. 110, no. 3, pp. 474–489, 1998. View at Scopus
  5. K. Ghoseiri, F. Szidarovszky, and M. J. Asgharpour, “A multi-objective train scheduling model and solution,” Transportation Research B, vol. 38, no. 10, pp. 927–952, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. M. B. Khan and X. Zhou, “Stochastic optimization model and solution algorithm for robust double-track train-timetabling problem,” IEEE Transactions on Intelligent Transportation Systems, vol. 11, no. 1, pp. 81–89, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. X. Zhou and M. Zhong, “Single-track train timetabling with guaranteed optimality: branch-and-bound algorithms with enhanced lower bounds,” Transportation Research B, vol. 41, no. 3, pp. 320–341, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Nachtigall and S. Voget, “Minimizing waiting times in integrated fixed interval timetables by upgrading railway tracks,” European Journal of Operational Research, vol. 103, no. 3, pp. 610–627, 1997. View at Scopus
  9. A. de Palma and R. Lindsey, “Optimal timetables for public transportation,” Transportation Research B, vol. 35, no. 8, pp. 789–813, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Nguyen, S. Pallottino, and F. Malucelli, “A modeling framework for passenger assignment on a transport network with timetables,” Transportation Science, vol. 35, no. 3, pp. 238–249, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. R. C. W. Wong, T. W. Y. Yuen, K. W. Fung, and J. M. Y. Leung, “Optimizing timetable synchronization for rail mass transit,” Transportation Science, vol. 42, no. 1, pp. 57–69, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. L. Meng and X. Zhou, “Robust single-track train dispatching model under a dynamic and stochastic environment: a scenario-based rolling horizon solution approach,” Transportation Research B, vol. 45, no. 7, pp. 1080–1102, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Carey and I. Crawford, “Scheduling trains on a network of busy complex stations,” Transportation Research B, vol. 41, no. 2, pp. 159–178, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. G. Caimi, F. Chudak, M. Fuchsberger, M. Laumanns, and R. Zenklusen, “A new resource-constrained multicommodity flow model for conflict-free train routing and scheduling,” Transportation Science, vol. 45, no. 2, pp. 212–227, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. H. Chang, C. H. Yeh, and C. C. Shen, “A multiobjective model for passenger train services planning: application to Taiwan's high-speed rail line,” Transportation Research B, vol. 34, no. 2, pp. 91–106, 2000. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Gen and R. W. Cheng, Genetic Algorithms and Engineering Optimization, John Wiley & Son, New York, NY, USA, 2000.
  17. H. M. Niu, “Determination of the skip-stop scheduling for a congested transit line by bilevel genetic algorithm,” International Journal of Computational Intelligence Systems, vol. 4, no. 6, pp. 1158–1167, 2011.
  18. J. Gao,, R. Chen, and Q. Pan, “A hybrid genetic algorithm for the distributed permutation flowshop scheduling problem,” International Journal of Computational Intelligence Systems, vol. 4, no. 4, pp. 497–508, 2011.