About this Journal Submit a Manuscript Table of Contents
Discrete Dynamics in Nature and Society
Volume 2012 (2012), Article ID 595487, 21 pages
http://dx.doi.org/10.1155/2012/595487
Research Article

Stability Analysis and Optimal Control of a Vector-Borne Disease with Nonlinear Incidence

1Centre for Advanced Mathematics and Physics, National University of Sciences and Technology, H-12 Campus, Islamabad 44000, Pakistan
2Department of Mathematics, Pusan National University, Busan 609-735, Republic of Korea
3Department of Mathematics, Vaal University of Technology, Andries Potgieter Boulevard, Private Bag X021, Vanderbijlpark 1900, South Africa

Received 29 July 2012; Revised 17 September 2012; Accepted 17 September 2012

Academic Editor: M. De la Sen

Copyright © 2012 Muhammad Ozair et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Cai and X. Li, “Analysis of a simple vector-host epidemic model with direct transmission,” Discrete Dynamics in Nature and Society, vol. 2010, Article ID 679613, 12 pages, 2010. View at Publisher · View at Google Scholar
  2. L. Cai, S. Guo, X. Li, and M. Ghosh, “Global dynamics of a dengue epidemic mathematical model,” Chaos, Solitons and Fractals, vol. 42, no. 4, pp. 2297–2304, 2009. View at Publisher · View at Google Scholar
  3. S. Liu, Y. Pei, C. Li, and L. Chen, “Three kinds of TVS in a SIR epidemic model with saturated infectious force and vertical transmission,” Applied Mathematical Modelling, vol. 33, no. 4, pp. 1923–1932, 2009. View at Publisher · View at Google Scholar
  4. V. Capasso and G. Serio, “A generalization of the Kermack-McKendrick deterministic epidemic model,” Mathematical Biosciences, vol. 42, no. 1-2, pp. 43–61, 1978. View at Publisher · View at Google Scholar
  5. X. Zhang and X. Liu, “Backward bifurcation of an epidemic model with saturated treatment function,” Journal of Mathematical Analysis and Applications, vol. 348, no. 1, pp. 433–443, 2008. View at Publisher · View at Google Scholar
  6. D. Xiao and S. Ruan, “Global analysis of an epidemic model with nonmonotone incidence rate,” Mathematical Biosciences, vol. 208, no. 2, pp. 419–429, 2007. View at Publisher · View at Google Scholar
  7. W. Wang, “Epidemic models with nonlinear infection forces,” Mathematical Biosciences and Engineering, vol. 3, no. 1, pp. 267–279, 2006. View at Publisher · View at Google Scholar
  8. S. Ruan and W. Wang, “Dynamical behavior of an epidemic model with a nonlinear incidence rate,” Journal of Differential Equations, vol. 188, no. 1, pp. 135–163, 2003. View at Publisher · View at Google Scholar
  9. W. M. Liu, H. W. Hethcote, and S. A. Levin, “Dynamical behavior of epidemiological models with nonlinear incidence rates,” Journal of Mathematical Biology, vol. 25, no. 4, pp. 359–380, 1987. View at Publisher · View at Google Scholar
  10. L.-M. Cai and X.-Z. Li, “Global analysis of a vector-host epidemic model with nonlinear incidences,” Applied Mathematics and Computation, vol. 217, no. 7, pp. 3531–3541, 2010. View at Publisher · View at Google Scholar
  11. S. Lenhart and J. T. Workman, Optimal Control Applied to Biological Models, Mathematical and Computational Biology Series, Chapman and Hall/CRC, London, UK, 2007.
  12. I. H. Jung, Y. H. Kang, and G. Zaman, “Optimal treatment of an SIR epidemic model with timedelay,” Biosystems, vol. 98, no. 1, pp. 43–50, 2009. View at Publisher · View at Google Scholar
  13. A. A. Lashari, S. Aly, K. Hattaf, G. Zaman, I. H. Jung, and X. Z. Li, “Presentation of malaria epidemics using multiple optimal controls,” Journal of Applied Mathematics, vol. 2012, Article ID 946504, 17 pages, 2012. View at Publisher · View at Google Scholar
  14. K. Blayneh, Y. Cao, and H.-D. Kwon, “Optimal control of vector-borne diseases: treatment and prevention,” Discrete and Continuous Dynamical Systems A, vol. 11, no. 3, pp. 587–611, 2009. View at Publisher · View at Google Scholar
  15. K. O. Okosun and O. D. Makinde, “Impact of chemo-therapy on optimal control of malaria disease with infected immigrants,” BioSystems, vol. 104, no. 1, pp. 32–41, 2011.
  16. A. A. Lashari and G. Zaman, “Global dynamics of vector-borne diseases with horizontal transmission in host population,” Computers & Mathematics with Applications, vol. 61, no. 4, pp. 745–754, 2011. View at Publisher · View at Google Scholar
  17. A. A. Lashari and G. Zaman, “Optimal control of a vector borne disease with horizontal transmission,” Nonlinear Analysis. Real World Applications, vol. 13, no. 1, pp. 203–212, 2012. View at Publisher · View at Google Scholar
  18. T. K. Kar and A. Batabyal, “Stability analysis and optimal control of an SIR epidemic model with vaccination,” BioSystems, vol. 104, no. 2-3, pp. 127–135, 2011. View at Publisher · View at Google Scholar
  19. J. P. LaSalle, The Stability of Dynamical Systems, Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, Pa, USA, 1976.
  20. M. Y. Li and J. S. Muldowney, “A geometric approach to global-stability problems,” SIAM Journal on Mathematical Analysis, vol. 27, no. 4, pp. 1070–1083, 1996. View at Publisher · View at Google Scholar
  21. A. Fonda, “Uniformly persistent semidynamical systems,” Proceedings of the American Mathematical Society, vol. 104, no. 1, pp. 111–116, 1988. View at Publisher · View at Google Scholar
  22. G. Butler, H. I. Freedman, and P. Waltman, “Uniformly persistent systems,” Proceedings of the American Mathematical Society, vol. 96, no. 3, pp. 425–430, 1986. View at Publisher · View at Google Scholar
  23. N. Chitnis, J. M. Hyman, and J. M. Cushing, “Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model,” Bulletin of Mathematical Biology, vol. 70, no. 5, pp. 1272–1296, 2008. View at Publisher · View at Google Scholar
  24. L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, vol. 4, Gordon & Breach Science Publishers, New York, NY, USA, 1986.
  25. W. H. Fleming and R. W. Rishel, Deterministic and Stochastic Optimal Control, Springer-Verlag, New York, NY, USA, 1975.