About this Journal Submit a Manuscript Table of Contents
Discrete Dynamics in Nature and Society
Volume 2012 (2012), Article ID 649213, 11 pages
http://dx.doi.org/10.1155/2012/649213
Research Article

A Model for Bus Crew Scheduling Problem with Multiple Duty Types

School of Traffic and Transportation, Lanzhou Jiaotong University, Lanzhou 730070, China

Received 18 June 2012; Revised 23 August 2012; Accepted 26 August 2012

Academic Editor: Wuhong Wang

Copyright © 2012 Mingming Chen and Huimin Niu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. M. Smith and A. Wren, “A bus crew scheduling system using a set covering formulation,” Transportation Research Part A, vol. 22, no. 2, pp. 97–108, 1988. View at Scopus
  2. K. Darby-Dowman and G. Mitra, “An extension of set partitioning with application to scheduling problems,” European Journal of Operational Research, vol. 21, no. 2, pp. 200–205, 1985. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  3. M. Mesquita and A. Paias, “Set partitioning/covering-based approaches for the integrated vehicle and crew scheduling problem,” Computers and Operations Research, vol. 35, no. 5, pp. 1562–1575, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. J. E. Beasley and B. Cao, “A dynamic programming based algorithm for the crew scheduling problem,” Computers and Operations Research, vol. 25, no. 7-8, pp. 567–582, 1998. View at Scopus
  5. H. R. Lourenço, J. P. Paixão, and R. Portugal, “Multiobjective metaheuristics for the bus-driver scheduling problem,” Transportation Science, vol. 35, no. 3, pp. 331–343, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. D. Huisman, R. Freling, and A. P. M. Wagelmans, “Multiple-depot integrated vehicle and crew scheduling,” Transportation Science, vol. 39, no. 4, pp. 491–502, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. G. Mitra and K. Darby-Dowman, “A computer-based bus crew scheduling system using integer programming,” Computer Scheduling of Public Transport, vol. 35, no. 5, pp. 223–232, 1985.
  8. M. Desrochers and F. Soumis, “A column generation approach to the urban transit crew scheduling problem,” Transprotation Science, vol. 23, no. 1, pp. 1–13, 1989.
  9. R. Clement and A. Wren, “Greedy genetic algorithms, optimizing mutations and bus driver scheduling,” Computer-Aided Transit Scheduling, Lecture Notes in Economics and Mathematical Systems, vol. 430, pp. 213–235, 1995.
  10. J. E. Beasley and B. Cao, “A tree search algorithm for the crew scheduling problem,” European Journal of Operational Research, vol. 94, no. 3, pp. 517–526, 1996. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Ceder, Public Transit Planning and Operation-Theory, Modelling and Practice, chapter 10, Elsevier, Oxford, UK, 2007.
  12. Y. Shen and Y. Ni, “Model for crew scheduling with time windows and multi-neighborhood structures,” Journal of Huazhong University of Science and Technology, vol. 36, no. 12, pp. 31–34, 2008. View at Scopus
  13. Y. J. Yang, Y. P. Wang, and X. M. Zhao, “Research on staff scheduling of urban passenger taxi dispatching center based on genetic algorithm,” Journal of Highway and Transportation Research and Development, vol. 27, no. 7, pp. 142–146, 2010.
  14. H. M. Niu, “Determination of the skip-stop scheduling for a congested transit line by bilevel genetic algorithm,” International Journal of Computational Intelligence Systems, vol. 6, no. 4, pp. 1158–1167, 2011.
  15. V. Srdjan, E. Aleksandar, and L. Imre, “Optimization of workflow scheduling in utility management system with hierarchical neural network,” International Journal of Computational Intelligence Systems, vol. 4, no. 4, pp. 672–679, 2011.
  16. O. Atli, “Tabu search and an exact algorithm for the solutions of resource-constrained project scheduling problems,” International Journal of Computational Intelligence Systems, vol. 4, no. 2, pp. 255–267, 2011. View at Scopus