About this Journal Submit a Manuscript Table of Contents
Discrete Dynamics in Nature and Society
Volume 2013 (2013), Article ID 104173, 6 pages
http://dx.doi.org/10.1155/2013/104173
Research Article

Fractional Sums and Differences with Binomial Coefficients

1Department of Mathematics, Faculty of Art and Sciencs, Çankaya University, Balgat, 06530 Ankara, Turkey
2Institute of Space Sciences, P.O. BOX MG-23, 76900 Magurele-Bucharest, Romania
3Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, P.O. Box 80204, Jeddah 21589, Saudi Arabia
4Department of Mathematics, Texas A & M University, 700 University Boulevard, Kingsville, TX, USA

Received 31 March 2013; Accepted 3 May 2013

Academic Editor: Shurong Sun

Copyright © 2013 Thabet Abdeljawad et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. G. Samko, A. A. Kilbas, and O. I. Marichev, Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Yverdon, Switzerland, 1993. View at Zentralblatt MATH · View at MathSciNet
  2. I. Podlubny, Fractional Differential Equations, vol. 198, Academic Press., San Diego, Calif, USA, 1999. View at Zentralblatt MATH · View at MathSciNet
  3. A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Application of Fractional Differential Equations, vol. 204 of North-Holland Mathematics Studies, Elsevier Science, Amsterdam, The Netherland, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  4. B. J. West, M. Bologna, and P. Grigolini, Physics of Fractal Operators, Springer, New York, NY, USA, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  5. R. L. Magin, Fractional Calculus in Bioengineering, Begell House, West Redding, Conn, USA, 2006.
  6. D. Baleanu, K. Diethelm, E. Scalas, and J. J. Trujillo, Fractional Calculus Models and Numerical Methods, vol. 3 of Series on Complexity, Nonlinearity and Chaos, World Scientific, Hackensack, NJ, USA, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  7. M. D. Ortigueira, “Fractional central differences and derivatives,” Journal of Vibration and Control, vol. 14, no. 9-10, pp. 1255–1266, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  8. P. Lino and G. Maione, “Tuning PI(ν) fractional order controllers for position control of DC-servomotors,” in Proceedings of the IEEE International Symposium on Industrial Electronics (ISIE '10), pp. 359–363, July 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. J. A. T. Machado, C. M. Pinto, and A. M. Lopes, “Power law and entropy analysis of catastrophic phenomena,” Mathematical Problems in Engineering, vol. 2013, Article ID 562320, 10 pages, 2013. View at Publisher · View at Google Scholar
  10. C. F. Lorenzo, T. T. Hartley, and R. Malti, “Application of the principal fractional metatrigonometric functions for the solution of linear commensurate-order time-invariant fractional differential equations,” Philosophical Transactions of the Royal Society A, vol. 371, no. 1990, Article ID 20120151, 2013.
  11. H. L. Gray and N. F. Zhang, “On a new definition of the fractional difference,” Mathematics of Computation, vol. 50, no. 182, pp. 513–529, 1988. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  12. K. S. Miller and B. Ross, “Fractional difference calculus,” in Proceedings of the International Symposium on Univalent Functions, Fractional Calculus and Their Applications, pp. 139–152, Nihon University, Koriyama, Japan, 1989.
  13. F. M. Atıcı and P. W. Eloe, “A transform method in discrete fractional calculus,” International Journal of Difference Equations, vol. 2, no. 2, pp. 165–176, 2007. View at MathSciNet
  14. F. M. Atıcı and P. W. Eloe, “Initial value problems in discrete fractional calculus,” Proceedings of the American Mathematical Society, vol. 137, no. 3, pp. 981–989, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  15. F. M. Atıcı and P. W. Eloe, “Discrete fractional calculus with the nabla operator,” Electronic Journal of Qualitative Theory of Differential Equations, no. 3, pp. 1–12, 2009. View at Zentralblatt MATH · View at MathSciNet
  16. F. M. Atıcı and S. Şengül, “Modeling with fractional difference equations,” Journal of Mathematical Analysis and Applications, vol. 369, no. 1, pp. 1–9, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  17. F. M. Atıcı and P. W. Eloe, “Gronwall's inequality on discrete fractional calculus,” Computerand Mathematics with Applications, vol. 64, no. 10, pp. 3193–3200, 2012. View at Publisher · View at Google Scholar
  18. T. Abdeljawad, “On Riemann and Caputo fractional differences,” Computers and Mathematics with Applications, vol. 62, no. 3, pp. 1602–1611, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  19. T. Abdeljawad and D. Baleanu, “Fractional differences and integration by parts,” Journal of Computational Analysis and Applications, vol. 13, no. 3, pp. 574–582, 2011. View at Zentralblatt MATH · View at MathSciNet
  20. M. Holm, The theory of discrete fractional calculus development and application [dissertation], University of Nebraska, Lincoln, Neb, USA, 2011.
  21. G. A. Anastassiou, “Principles of delta fractional calculus on time scales and inequalities,” Mathematical and Computer Modelling, vol. 52, no. 3-4, pp. 556–566, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  22. G. A. Anastassiou, “Nabla discrete fractional calculus and nabla inequalities,” Mathematical and Computer Modelling, vol. 51, no. 5-6, pp. 562–571, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  23. G. A. Anastassiou, “Foundations of nabla fractional calculus on time scales and inequalities,” Computers and Mathematics with Applications, vol. 59, no. 12, pp. 3750–3762, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  24. N. R. O. Bastos, R. A. C. Ferreira, and D. F. M. Torres, “Discrete-time fractional variational problems,” Signal Processing, vol. 91, no. 3, pp. 513–524, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Bohner and A. Peterson, Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston, Mass, USA, 2003.
  26. G. Boros and V. Moll, Iresistible Integrals, Symbols, Analysis and Expreiments in the Evaluation of Integrals, Cambridge University Press, Cambridge, UK, 2004. View at Publisher · View at Google Scholar · View at MathSciNet
  27. R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics: A Foundation for Copmuter Science, Addison-Wesley, Reading, Mass, USA, 2nd edition, 1994. View at MathSciNet
  28. J. Spanier and K. B. Oldham, “The pochhammer polynomials (x)n,” in An Atlas of Functions, pp. 149–156, Hemisphere, Washington, DC, USA, 1987.
  29. T. Abdeljawad, “Dual identities in fractional difference calculus within Riemann,” Advances in Difference Equations, vol. 2013, article 36, 2013. View at Publisher · View at Google Scholar · View at MathSciNet
  30. T. Abdeljawad and F. M. Atıcı, “On the definitions of nabla fractional operators,” Abstract and Applied Analysis, vol. 2012, Article ID 406757, 13 pages, 2012. View at Zentralblatt MATH · View at MathSciNet
  31. K. Ahrendt, L. Castle, M. Holm, and K. Yochman, “Laplace transforms for the nabla-difference operator and a fractional variation of parameters formula,” Communications in Applied Analysis. In press.