About this Journal Submit a Manuscript Table of Contents
Discrete Dynamics in Nature and Society
Volume 2013 (2013), Article ID 132064, 8 pages
http://dx.doi.org/10.1155/2013/132064
Research Article

Optimal Energy Control Strategy Design for a Hybrid Electric Vehicle

National Engineering Laboratory for Electric Vehicles, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China

Received 8 September 2012; Revised 3 December 2012; Accepted 25 December 2012

Academic Editor: Geert Wets

Copyright © 2013 Yuan Zou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. M. Baumann, G. Washington, B. C. Glenn, and G. Rizzoni, “Mechatronic design and control of hybrid electric vehicles,” IEEE/ASME Transactions on Mechatronics, vol. 5, no. 1, pp. 58–72, 2000. View at Publisher · View at Google Scholar
  2. N. J. Schouten, M. A. Salman, and N. A. Kheir, “Fuzzy logic control for parallel hybrid vehicles,” IEEE Transactions on Control Systems Technology, vol. 10, no. 3, pp. 460–468, 2002. View at Publisher · View at Google Scholar
  3. A. Sciarretta and L. Guzzella, “Control of hybrid electric vehicles,” IEEE Control Systems Magazine, vol. 27, no. 2, pp. 60–70, 2007. View at Publisher · View at Google Scholar
  4. G. Paganelli, G. Ercole, A. Brahma, Y. Guezennec, and G. Rizzoni, “A general formulation for the instantaneous control of the power split in charge-sustaining hybrid electric vehicles,” in Proceedings of the 5th International Symposium on Advanced Vehicle Control (AVEC '00), Ann Arbor, Minn, USA, 2000.
  5. V. H. Johnson, K. B. Wipke, and D. J. Rausen, “HEV control strategy for real-time optimization of fuel economy and emissions,” in Proceedings of the Future Car Congress, SAE paper no. 2000-01-1543.
  6. A. Brahma, Y. Guezennec, and G. Rizzoni, “Dynamic optimization of mechanical electrical power flow in parallel hybrid electric vehicles,” in Proceedings of the 5th International Symposium on Advanced Vehicle Control (AVEC '00), Ann Arbor, Minn, USA, 2000.
  7. U. Zoelch and D. Schroeder, “Dynamic optimization method for design and rating of the components of a hybrid vehicle,” International Journal of Vehicle Design, vol. 19, no. 1, pp. 1–13, 1998.
  8. C. C. Lin, J. M. Kang, J. W. Grizzle, and H. Peng, “Energy management strategy for a parallel hybrid electric truck,” in Proceedings of the American Control Conference, pp. 2878–2883, Arlington, Va, USA, June 2001.
  9. J. M. Miller, Propulsion Systems for Hybrid Vehicles, The Institution of Engineering and Technology, Stevenage, UK, 2004.
  10. S.-J. Hou, Y. Zou, and R. Chen, “Feed-forward model development of a hybrid electric truck for power management studies,” in Proceedings of the 2nd Intelligent Control and Information Processing (ICICIP '11), Harbin, China, 2011.
  11. J. Liu, Modeling, configuration and control optimization of power-split hybrid vehicles [Ph.D. thesis], University of Michigan, 2007.
  12. D. L. McKain, N. N. Clark, T. H. Balon, P. J. Moynihan, S. A. Lynch, and T. C. Webb, “Characterization of emissions from hybrid-electric and conventional transit buses,” SAE Paper 2000-01-2011, 2000.
  13. Society of Automotive Engineers, “Recommended Practice for Measuring Exhaust Emissions and Fuel Economy of Hybrid-Electric Vehicles,” Hybrid-Electric Vehicle Test Procedure Task Force SAE J1711, 1998.
  14. I. Kolmanovsky, M. van Nieuwstadt, and J. Sun, “Optimization of complex powertrain systems for fuel economy and emissions,” in Proceedings of the IEEE International Conference on Control Applications (CCA '99), pp. 833–839, August 1999.
  15. R. Bellman, Dynamic Programming, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, USA, 2010. View at Zentralblatt MATH · View at MathSciNet