About this Journal Submit a Manuscript Table of Contents
Discrete Dynamics in Nature and Society
Volume 2013 (2013), Article ID 137890, 8 pages
http://dx.doi.org/10.1155/2013/137890
Research Article

Eigenvalue of Fractional Differential Equations with -Laplacian Operator

Department of Mathematics, Aba Teachers College, Wenchuan, Sichuan 623002, China

Received 27 December 2012; Accepted 19 February 2013

Academic Editor: Fuyi Xu

Copyright © 2013 Wenquan Wu and Xiangbing Zhou. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, vol. 204 of North-Holland Mathematics Studies, Elsevier, Amsterdam, The Netherlands, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  2. K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, NY, USA, 1993. View at Zentralblatt MATH · View at MathSciNet
  3. I. Podlubny, Fractional Differential Equations, vol. 198 of Mathematics in Science and Engineering, Academic Press, New York, NY, USA, 1999. View at Zentralblatt MATH · View at MathSciNet
  4. A. Babakhani and V. Daftardar-Gejji, “Existence of positive solutions of nonlinear fractional differential equations,” Journal of Mathematical Analysis and Applications, vol. 278, no. 2, pp. 434–442, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  5. D. Delbosco and L. Rodino, “Existence and uniqueness for a nonlinear fractional differential equation,” Journal of Mathematical Analysis and Applications, vol. 204, no. 2, pp. 609–625, 1996. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  6. A. M. A. El-Sayed, “Nonlinear functional-differential equations of arbitrary orders,” Nonlinear Analysis: Theory, Methods and Applications A, vol. 33, no. 2, pp. 181–186, 1998. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  7. V. Lakshmikantham, “Theory of fractional functional differential equations,” Nonlinear Analysis: Theory, Methods and Applications A, vol. 69, no. 10, pp. 3337–3343, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  8. S. Zhang, “Existence of positive solution for some class of nonlinear fractional differential equations,” Journal of Mathematical Analysis and Applications, vol. 278, no. 1, pp. 136–148, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  9. X. Zhang and Y. Han, “Existence and uniqueness of positive solutions for higher order nonlocal fractional differential equations,” Applied Mathematics Letters, vol. 25, no. 3, pp. 555–560, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  10. X. Zhang, L. Liu, and Y. Wu, “The eigenvalue problem for a singular higher order fractional differential equation involving fractional derivatives,” Applied Mathematics and Computation, vol. 218, no. 17, pp. 8526–8536, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  11. Z. Bai and H. Lv, “Positive solutions for boundary value problem of nonlinear fractional differential equation,” Journal of Mathematical Analysis and Applications, vol. 311, no. 2, pp. 495–505, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  12. X. Zhang, L. Liu, and Y. Wu, “The uniqueness of positive solution for a singular fractional differential system involving derivatives,” Communications in Nonlinear Science and Numerical Simulation, vol. 18, pp. 1400–1409, 2013.
  13. E. R. Kaufmann and E. Mboumi, “Positive solutions of a boundary value problem for a nonlinear fractional differential equation,” Electronic Journal of Qualitative Theory of Differential Equations, no. 3, pp. 1–11, 2008. View at Zentralblatt MATH · View at MathSciNet
  14. C. Bai, “Triple positive solutions for a boundary value problem of nonlinear fractional differential equation,” Electronic Journal of Qualitative Theory of Differential Equations, no. 24, pp. 1–10, 2008. View at Zentralblatt MATH · View at MathSciNet
  15. C. F. Li, X. N. Luo, and Y. Zhou, “Existence of positive solutions of the boundary value problem for nonlinear fractional differential equations,” Computers and Mathematics with Applications, vol. 59, no. 3, pp. 1363–1375, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  16. J. Wang, H. Xiang, and Z. Liu, “Positive solutions for three-point boundary value problems of nonlinear fractional differential equations with p-Laplacian,” Far East Journal of Applied Mathematics, vol. 37, no. 1, pp. 33–47, 2009. View at MathSciNet
  17. J. Wang and H. Xiang, “Upper and lower solutions method for a class of singular fractional boundary value problems with p-Laplacian operator,” Abstract and Applied Analysis, vol. 2010, Article ID 971824, 12 pages, 2010. View at Publisher · View at Google Scholar · View at MathSciNet
  18. G. Chai, “Positive solutions for boundary value problem of fractional differential equation with p-Laplacian operator,” Boundary Value Problems, vol. 2012, article 18, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  19. X. Zhang, L. Liu, B. Wiwatanapataphee, and Y. Wu, “Positive solutions of eigenvalue problems for a class of fractional differential equations with derivatives,” Abstract and Applied Analysis, vol. 2012, Article ID 512127, 16 pages, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  20. Y. Zhou, “Existence and uniqueness of solutions for a system of fractional differential equations,” Fractional Calculus and Applied Analysis, vol. 12, no. 2, pp. 195–204, 2009. View at MathSciNet
  21. X. Zhang, L. Liu, and Y. Wu, “Existence results for multiple positive solutions of nonlinear higher order perturbed fractional differential equations with derivatives,” Applied Mathematics and Computation, vol. 219, no. 4, pp. 1420–1433, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  22. Y. Zhou, “Existence and uniqueness of fractional functional differential equations with unbounded delay,” International Journal of Dynamical Systems and Differential Equations, vol. 1, no. 4, pp. 239–244, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  23. X. Zhang, L. Liu, Y. Wu, and Y. Lu, “The iterative solutions of nonlinear fractional differential equations,” Applied Mathematics and Computation, vol. 219, no. 9, pp. 4680–4691, 2013. View at Publisher · View at Google Scholar · View at MathSciNet