About this Journal Submit a Manuscript Table of Contents
Discrete Dynamics in Nature and Society
Volume 2013 (2013), Article ID 147164, 9 pages
http://dx.doi.org/10.1155/2013/147164
Research Article

Synchronization of Discontinuous Neural Networks with Delays via Adaptive Control

1Department of Mathematics, Chongqing Normal University, Chongqing 401331, China
2Department of Mathematics, Southeast University, Nanjing 210096, China
3Department of Mathematics, King Abdulaziz University, Jeddah 21589, Saudi Arabia

Received 29 September 2012; Accepted 23 January 2013

Academic Editor: Sridhar Seshagiri

Copyright © 2013 Xinsong Yang and Jinde Cao. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Zhou and Y. X. Cao, “Function projective synchronization between fractional-order chaotic systems and integer-order chaotic systems,” Chinese Physics B, vol. 19, no. 10, Article ID 100507, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. L. Pan and J. Cao, “Exponential synchronization for impulsive dynamical networks,” Discrete Dynamics in Nature and Society, vol. 2012, Article ID 232794, 20 pages, 2012. View at Zentralblatt MATH · View at MathSciNet
  3. P. Zhou, R. Ding, and Y. Cao, “Multi drive-one response synchronization for fractional-order chaotic systems,” Nonlinear Dynamics, vol. 70, no. 2, pp. 1263–1271, 2012. View at Publisher · View at Google Scholar
  4. S. Sundar and A. A. Minai, “Synchronization of randomly multiplexed chaotic systems with application to communication,” Physical Review Letters, vol. 85, no. 25, pp. 5456–5459, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Bowong, F. M. Moukam Kakmeni, and H. Fotsin, “A new adaptive observer-based synchronization scheme for private communication,” Physics Letters, Section A, vol. 355, no. 3, pp. 193–201, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. X. Yang, J. Cao, and J. Lu, “Stochastic synchronization of complex networks with nonidentical nodes via hybrid adaptive and impulsive control,” IEEE Transactions on Circuits and Systems I, vol. 59, no. 2, pp. 371–384, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  7. X. Yang, J. Cao, Y. Long, and W. Rui, “Adaptive lag synchronization for competitive neural networks with mixed delays and uncertain hybrid perturbations,” IEEE Transactions on Neural Networks, vol. 21, no. 10, pp. 1656–1667, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. E. M. Shahverdiev, S. Sivaprakasam, and K. A. Shore, “Lag synchronization in time-delayed systems,” Physics Letters, Section A, vol. 292, no. 6, pp. 320–324, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. T. Huang, C. Li, W. Yu, and G. Chen, “Synchronization of delayed chaotic systems with parameter mismatches by using intermittent linear state feedback,” Nonlinearity, vol. 22, no. 3, pp. 569–584, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  10. X. Liu, T. Chen, J. Cao, and W. Lu, “Dissipativity and quasi-synchronization for neural networks with discontinuous activations and parameters,” Neural Networks, vol. 24, pp. 1013–1021, 2011.
  11. P. Zhou and W. Zhu, “Function projective synchronization for fractional-order chaotic systems,” Nonlinear Analysis: Real World Applications, vol. 12, no. 2, pp. 811–816, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  12. X. Wu, C. Xu, J. Feng, Y. Zhao, and X. Zhou, “Generalized projective synchronization between two different neural networks with mixed time delays,” Discrete Dynamics in Nature and Society, vol. 2012, Article ID 153542, 19 pages, 2012. View at Zentralblatt MATH · View at MathSciNet
  13. P. Zhou, R. Ding, and Y. Cao, “Hybrid projective synchronization for two identical fractional-order chaotic systems,” Discrete Dynamics in Nature and Society, vol. 2012, Article ID 768587, 11 pages, 2012. View at Publisher · View at Google Scholar
  14. N. F. Rulkov, M. M. Sushchik, L. S. Tsimring, and H. D. I. Abarbanel, “Generalized synchronization of chaos in directionally coupled chaotic systems,” Physical Review E, vol. 51, no. 2, pp. 980–994, 1995. View at Publisher · View at Google Scholar · View at Scopus
  15. X. Yang, Q. Zhu, and C. Huang, “Generalized lag-synchronization of chaotic mix-delayed systems with uncertain parameters and unknown perturbations,” Nonlinear Analysis: Real World Applications, vol. 12, no. 1, pp. 93–105, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  16. B. Xin and T. Chen, “Projective synchronization of N-dimensional chaotic fractional-order systems via linear state error feedback control,” Discrete Dynamics in Nature and Society, Article ID 191063, 10 pages, 2012. View at MathSciNet
  17. X. Yang and J. Cao, “Adaptive pinning synchronization of complex networks with stochastic perturbations,” Discrete Dynamics in Nature and Society, vol. 2010, Article ID 416182, 21 pages, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  18. H. Hu, “On stability of nonlinear continuous-time neural networks with delay,” IEEE Transactions on Neural Networks, vol. 13, pp. 1135–1143, 2000. View at Publisher · View at Google Scholar
  19. M. Forti and P. Nistri, “Global convergence of neural networks with discontinuous neuron activations,” IEEE Transactions on Circuits and Systems I, vol. 50, no. 11, pp. 1421–1435, 2003. View at Publisher · View at Google Scholar · View at MathSciNet
  20. M. Forti, P. Nistri, and D. Papini, “Global exponential stability and global convergence in finite time of delayed neural networks with infinite gain,” IEEE Transactions on Neural Networks, vol. 16, no. 6, pp. 1449–1463, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. Z. Guo and L. Huang, “LMI conditions for global robust stability of delayed neural networks with discontinuous neuron activations,” Applied Mathematics and Computation, vol. 215, no. 3, pp. 889–900, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  22. Y. Wang, Y. Zuo, L. Huang, and C. Li, “Global robust stability of delayed neural networks with discontinuous activation functions,” IET Control Theory & Applications, vol. 2, no. 7, pp. 543–553, 2008. View at Publisher · View at Google Scholar · View at MathSciNet
  23. Y. Zuo, Y. Wang, L. Huang, Z. Wang, X. Liu, and X. Wu, “Robust stability criterion for delayed neural networks with discontinuous activation functions,” Neural Processing Letters, vol. 29, no. 1, pp. 29–44, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. X. Liu and J. Cao, “On periodic solutions of neural networks via differential inclusions,” Neural Networks, vol. 22, no. 4, pp. 329–334, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. W. Lu and T. Chen, “Almost periodic dynamics of a class of delayed neural networks with discontinuous activations,” Neural Computation, vol. 20, no. 4, pp. 1065–1090, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  26. X. Liu and J. Cao, “Synchronization control of discontinuous neural networks via approximation,” in Proceedings of the Chinese Control and Decision Conference (CDC '10), pp. 782–787, May 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. B. Liu, W. Lu, and T. Chen, “New conditions on synchronization of networks of linearly coupled dynamical systems with non-Lipschitz right-hand sides,” Neural Networks, vol. 25, pp. 5–13, 2012.
  28. A. F. Filippov, “Differential equations with discontinuous right-hand sides,” in Mathematics and Its Applications, Soviet Series, Kluwer Academic Publishers, Boston, Mass, USA.
  29. F. H. Clarke, Optimization and Nonsmooth Analysis, John Wiley & Sons, New York, NY, USA, 1983. View at MathSciNet
  30. Z. Jiang and Z. Wu, Real Analysis, Higher Education Publisher, Beijing, China, 2nd edition, 2005.
  31. B. E. Paden and S. S. Sastry, “A calculus for computing Filippov's differential inclusion with application to the variable structure control of robot manipulators,” IEEE Transactions on Circuits and Systems, vol. 34, no. 1, pp. 73–82, 1987. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  32. M.-F. Danca, “Synchronization of switch dynamical systems,” International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, vol. 12, no. 8, pp. 1813–1826, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  33. L. Huang, J. Wang, and X. Zhou, “Existence and global asymptotic stability of periodic solutions for Hopfield neural networks with discontinuous activations,” Nonlinear Analysis. Real World Applications, vol. 10, no. 3, pp. 1651–1661, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  34. M. F. Danca, “Controlling chaos in discontinuous dynamical systems,” Chaos, Solitons and Fractals, vol. 22, no. 3, pp. 605–612, 2004. View at Publisher · View at Google Scholar · View at Scopus