About this Journal Submit a Manuscript Table of Contents
Discrete Dynamics in Nature and Society
Volume 2013 (2013), Article ID 150513, 9 pages
http://dx.doi.org/10.1155/2013/150513
Research Article

Exploring the Effects of Different Walking Strategies on Bi-Directional Pedestrian Flow

Lili Lu,1,2 Gang Ren,1,2 Wei Wang,1,2 Chen Yu,1,2 and Chenzi Ding1,2

1Jiangsu Key Laboratory of Urban ITS, Southeast University, Si Pai Lou No. 2, Nanjing 210096, China
2Jiangsu Province Collaborative Innovation Center of Modern Urban Traffic Technologies, Si Pai Lou No. 2, Nanjing 210096, China

Received 21 August 2013; Accepted 8 October 2013

Academic Editor: Niu Huimin

Copyright © 2013 Lili Lu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Helbing, P. Molnár, I. J. Farkas, and K. Bolay, “Self-organizing pedestrian movement,” Environment and Planning B, vol. 28, no. 3, pp. 361–383, 2001. View at Scopus
  2. I. D. Couzin and J. Krause, “Self-organization and collective behavior in vertebrates,” Advances in the Study of Behavior, vol. 32, pp. 1–75, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. W. Daamen and S. P. Hoogendoorn, “Controlled experiments to derive walking behavior,” European Journal of Transport and Infrastructure Research, vol. 3, no. 1, pp. 39–59, 2003.
  4. T. Kretz, A. Grünebohm, and M. Schreckenberg, “Experimental study of pedestrian flow through a bottleneck,” Journal of Statistical Mechanics, no. 10, Article ID P10014, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. D. Helbing, L. Buzna, A. Johansson, and T. Werner, “Self-organized pedestrian crowd dynamics: experiments, simulations, and design solutions,” Transportation Science, vol. 39, no. 1, pp. 1–24, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. D. Helbing and P. Molnár, “Social force model for pedestrian dynamics,” Physical Review E, vol. 51, no. 5, pp. 4282–4286, 1995. View at Publisher · View at Google Scholar · View at Scopus
  7. R. Löhner, “On the modeling of pedestrian motion,” Applied Mathematical Modelling, vol. 34, no. 2, pp. 366–382, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  8. Q.-M. Hu, W.-N. Fang, and Y. Deng, “Research on pedestrian movement's model based on social force,” Journal of System Simulation, vol. 21, no. 4, article 015, 2009. View at Scopus
  9. H.-H. Tian, H.-D. He, Y.-F. Wei, X. Yu, and W.-Z. Lu, “Lattice hydrodynamic model with bidirectional pedestrian flow,” Physica A, vol. 388, no. 14, pp. 2895–2902, 2009. View at Publisher · View at Google Scholar · View at MathSciNet
  10. V. J. Blue and J. L. Adler, “Cellular automata microsimulation for modeling bi-directional pedestrian walkways,” Transportation Research B, vol. 35, no. 3, pp. 293–312, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. F. Weifeng, Y. Lizhong, and F. Weicheng, “Simulation of bi-direction pedestrian movement using a cellular automata model,” Physica A, vol. 321, no. 3-4, pp. 633–640, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Yue, H. Guan, J. Zhang, and C. Shao, “Study on bi-direction pedestrian flow using cellular automata simulation,” Physica A, vol. 389, no. 3, pp. 527–539, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Sarmady, F. Haron, and A. Z. H. Talib, “Modeling groups of pedestrians in least effort crowd movements using cellular automata,” in Proceedings of the 3rd Asia International Conference on Modelling and Simulation (AMS '09), pp. 520–525, Bali, Indonesia, May 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Batty, “.Agent-based pedestrian modeling,” Environment and Planning B, vol. 28, no. 3, pp. 321–326, 1993.
  15. H. Kuang, X.-L. Li, Y.-F. Wei, T. Song, and S.-Q. Dai, “Effect of following strength on pedestrian counter flow,” Chinese Physics B, vol. 19, no. 7, Article ID 070517, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Fukamachi and T. Nagatani, “Sidle effect on pedestrian counter flow,” Physica A, vol. 377, no. 1, pp. 269–278, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Maniccam, “Effects of back step and update rule on congestion of mobile objects,” Physica A, vol. 346, no. 3-4, pp. 631–650, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Ma, W.-G. Song, J. Zhang, S.-M. Lo, and G.-X. Liao, “κ-Nearest-Neighbor interaction induced self-organized pedestrian counter flow,” Physica A, vol. 389, no. 10, pp. 2101–2117, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. Z. Wang, B. Song, Y. Qin, and L. Jia, “Team-moving effect in bi-direction pedestrian flow,” Physica A, vol. 391, no. 11, pp. 3119–3128, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. F. Stonedahl and U. Wilensky, “Finding forms of flocking: evolutionary search in ABM parameter-spaces,” in Multi-Agent-Based Simulation XI, pp. 61–75, Springer, Berlin, Germany, 2011.
  21. L. L. Lu, G. Ren, W. Wang, et al., “Modeling Bi-direction pedestrian flow by cellular automata and complex networks theories,” in Proceedings of the Transportation Research Board 91st Annual Meeting, Wash ,DC, USA, January 2012.
  22. A. Kirchner, K. Nishinari, and A. Schadschneider, “Friction effects and clogging in a cellular automaton model for pedestrian dynamics,” Physical Review E, vol. 67, no. 5, Article ID 056122, 10 pages, 2003. View at Scopus
  23. M. Moussaïd, D. Helbing, S. Garnier, A. Johansson, M. Combe, and G. Theraulaz, “Experimental study of the behavioural mechanisms underlying self-organization in human crowds,” Proceedings of the Royal Society B, vol. 276, no. 1668, pp. 2755–2762, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. C. E. Dunn and D. Newton, “Optimal routes in GIS and emergency planning applications,” Area, vol. 24, no. 3, pp. 259–267, 1992. View at Scopus